4899x
001679
2020-12-04

比较中的AISC第F章扭转扭转和特征值计算方法

Utilizing the RF-STEEL AISC add-on module, steel member design is possible according to the AISC 360-16 standard. The following article will compare the results between calculating lateral torsional buckling according to Chapter F and Eigenvalue Analysis.

介绍

在附加模块RF-STEEL AISC中的钢梁设计默认情况下考虑侧向扭转屈曲(LTB)。 稳定性分析有很多种方法。 在第一种方法中,LTB是根据规范AISC 360-16 [1]中的章节F进行计算的。 在第二方法中,RFEM进行了特征值计算,计算了主导的稳定性条件和侧向扭转屈曲弯矩(M cr)。 These methods all take place in Table 1.5 Effective Lengths - Members and can be changed within the drop-down menu.

章节F

In the AISC 360-16 [1] standard, Chapter F, the modification Factor (Cb) is calculated on the basis of the maximum moment at the midspan and quarter points along the beam using Eqn. F1-1. 此外还要计算可动长度Lr和极限横向可动长度L p。 例如,参照AISC验算问题[2]中的F.1-2b,截面W 18 X 50受到均匀施加的荷载。 在图2中可以清楚地看到, 该梁的材料为钢A992,该梁的两端和第三个点都设有侧向约束。 The self-weight of the beam will not be considered. 如下下文手动计算中所示,可以使用RF-STEEL AISC计算名义弯矩(M n)。 然后将该值与需要的抗弯强度(Mr,y )进行比较。

首先,计算需要的抗弯强度。

Mu =(ω⋅L 2 )/8

Mu = 266.00 kip⋅ft。

现在对于梁的中段的弯扭屈曲修正系数(C b )通过公式F1-1 [1]计算。

Cb = 1.01

端部跨梁的弯扭屈曲修正系数(C b )计算公式F1-1 [1]。

Cb = 1.46

较高的所需强度和较低的Cb系数为准。 现在您可以计算屈服极限状态的极限横向位移长度(Lb)。

Lb = 69.9 in。 = 5.83 m

Using Eqn. F2-6 [1] for a doubly symmetric I-shaped member, the limiting unbraced length for the limit state of inelastic lateral-torsional buckling is equal to:

Lr = 203 inches

现在需要进行比较的弯曲屈服极限状态和无弹性的侧向扭转屈曲极限状态。 较小的状态被用于管理(LP<L≤b LR),这是在额定强度(Mn)的计算中使用。

Mn = 339 kip-ft

最后,对于弯曲刚度(φB)的阻力系数由M×N个,以便获得305千磅-英尺的现有抗弯刚度相乘

特征值

The second analysis method to analyze LTB is according to an eigenvalue or Euler buckling analysis that predicts the theoretical buckling strength of an elastic structure, or in this case, a single beam member. 在屈曲时,特征值被用于描述荷载。 然后,使用特征向量确定计算后的特征值的形状。 当由此产生的结构刚度达到零时,发生屈曲。 在这种情况下,从弹性刚度中删除由于压缩荷载作用引起的应力刚度。 In most circumstances, the first few buckling modes are of the most interest. [3]

因为这种方法的理论屈曲特征值可以预测弹性结构的屈曲稳定性,所以,该方法是一种更精确的方法,不同于AISC 360-16 [1] ,其临界弯矩(Mcr )更小。

对比

将RFEM附加模块RF-STEEL AISC和AISC 360-16 [1]的验算示例F.1-2B [2]之间的结果进行比较时,结果几乎相同。 The results are compared below in Figures 4 and 5, and the model can be downloaded below this article.

RF-STEEL AISC可以进行特征值分析,计算弯扭屈曲。 在RFEM中对上述示例F.1-2B [2]进行了建模和计算。 图6显示的是特征值分析的结果。

The same value calculated from the AISC Design Examples came out as:

φB MN = 305千磅-英尺

在RF-STEEL AISC中,Mn根据特征值分析与M cr相比较,按照F [1]章不同。 Fundamentally, the AISC 360-16 [1] standard takes a more conservative approach with analytical calculations compared to an eigenvalue analysis, which is a more theoretical and exact approach. It is expected for Mcr to be a larger value, and you will see Mn is not equal to Mcr because if L.T.B is not controlling then Mn is equal to the controlling value between yielding or local buckling. Ultimately, it is up to the engineer's discretion which method or approach is suitable for their member design. Chapter F calculations are likely required, but an eigenvalue analysis can provide a second look at LTB design from a theoretical standpoint for additional member capacity. 

The steel AISC verification problems from Chapter F can be found on Dlubal Software's website, where more details are shown comparing hand calculations to the results in RF-STEEL AISC. 这些可以在模型下方的链接中找到。


作者

Alex 负责北美市场的客户培训、技术支持和持续的程序开发。

链接
参考
  1. ANSI/AISC 360-16, Specification for Structural Steel Buildings
  2. AISC: Design Examples - Companion to the AISC Steel Construction Manual - Version 15.0. Chicago: AISC, 2017
  3. Laufs, T.; Radlbeck, C.: Aluminiumbau-Praxis nach Eurocode 9, 2. Auflage. Berlin: Beuth, 2020