Utilizando el complemento Cálculo de acero, es posible el cálculo de acero según la norma AISC 360-22. El siguiente artículo comparará la salida de resultados al calcular el pandeo lateral según el capítulo F frente a un análisis de valores propios.
La evaluación de la deriva de las plantas en un edificio es crucial para garantizar un rendimiento estructural aceptable al limitar la cantidad de deriva. Una deriva excesiva tiene el potencial de inducir la inestabilidad del sistema y puede causar daños a los componentes no estructurales, como los tabiques. Este artículo describe el procedimiento para establecer el desplazamiento entre plantas según ASCE 7-22 y el complemento Modelo de edificio en RFEM 6.
La norma ASCE 7-22 [1], secc. 12.9.1.6 especifica cuándo se deben considerar los efectos P-delta al ejecutar un análisis de espectro de respuesta modal para el cálculo sísmico. En el NBC 2020 [2], Enviado. 4.1.8.3.8.c proporciona solo un breve requisito de que se deben considerar los efectos de balanceo debidos a la interacción de las cargas de gravedad con la estructura deformada. Por lo tanto, puede haber situaciones en las que se deban considerar los efectos de segundo orden, también conocidos como P-delta, al realizar un análisis sísmico.
Los tres tipos de pórticos resistentes a momento (Ordinario, Intermedio, Especial) están disponibles en el complemento Cálculo de estructuras de acero de RFEM 6. El resultado del cálculo sísmico según AISC 341-22 se clasifica en dos secciones: requisitos de barras y requisitos de conexión.
Con el complemento Timber Design, es posible diseñar pilares de madera según el método ASD estándar de 2018 NDS. El cálculo preciso de la capacidad de compresión de barras de madera y los factores de ajuste son importantes para las consideraciones de la seguridad y el diseño. El siguiente artículo verificará la resistencia crítica al pandeo máxima calculada por el complemento Timber Design utilizando ecuaciones analíticas paso a paso según la norma NDS 2018, incluidos los factores de ajuste de compresión, el valor de cálculo de compresión ajustado y la relación de cálculo final.
El complemento Cálculo de acero en RFEM 6 ahora ofrece la capacidad de realizar el cálculo sísmico según AISC 341-16 y AISC 341-22. Actualmente hay disponibles cinco tipos de sistemas resistentes a fuerzas sísmicas (SFRS).
Los tres tipos de pórticos resistentes a momento (Ordinario, Intermedio, Especial) están disponibles en el complemento Cálculo de estructuras de acero de RFEM 6. El resultado del cálculo sísmico según AISC 341-16 se clasifica en dos secciones: requisitos de barras y requisitos de conexión.
El cálculo de estructuras resistentes a flexión según AISC 341-16 ahora es posible en el complemento Cálculo de estructuras de acero de RFEM 6. El resultado del cálculo sísmico se clasifica en dos secciones: requisitos de barras y requisitos de conexión. Este artículo trata sobre la resistencia necesaria de la conexión. Se presenta un ejemplo de comparación de los resultados entre RFEM y el Manual de diseño sísmico de AISC.
El cálculo de un pórtico ordinario arriostrado concéntricamente (OCBF) y un pórtico especial arriostrado concéntricamente (SCBF) se puede llevar a cabo en el complemento Cálculo de acero de RFEM 6. El resultado del cálculo sísmico según AISC 341-16 y 341-22 se clasifica en dos secciones: Requisitos de barras y requisitos de conexiones.
Cuando se trata de cargas de viento en estructuras de tipo edificio según ASCE 7, se pueden encontrar numerosos recursos para complementar las normas de diseño y ayudar a los ingenieros con esta aplicación de carga lateral. De todas formas, a los ingenieros/as les puede resultar más difícil encontrar recursos parecidos para las cargas de viento o para el tipo de estructuras que no son de construcción. Este artículo examinará los pasos para calcular y aplicar cargas de viento según ASCE 7-22 en un tanque circular de hormigón armado con una cubierta de cúpula.
Tanto la determinación de las vibraciones naturales como el análisis del espectro de respuesta se realizan siempre en un sistema lineal. Si hay comportamientos no lineales en el sistema, se linealizan y, por lo tanto, no se tienen en cuenta. Estos pueden ser barras traccionadas, apoyos no lineales o articulaciones no lineales, por ejemplo. Este artículo muestra cómo puede tratarlos en un análisis dinámico.
El cumplimiento de los códigos de construcción, como el Eurocódigo, es esencial para garantizar la seguridad, la integridad estructural y la sostenibilidad de los edificios y estructuras. La dinámica de fluidos computacional (CFD) juega un papel vital en este proceso al simular el comportamiento de los fluidos, optimizar los diseños y ayudar a los arquitectos e ingenieros a cumplir con los requisitos del Eurocódigo relacionados con el análisis de carga de viento, ventilación natural, seguridad contra incendios y eficiencia energética. Al integrar CFD en el proceso de diseño, los profesionales pueden crear edificios más seguros, eficientes y conformes que cumplen con los más altos estándares de construcción y diseño en Europa.
Las estructuras cortavientos son tipos especiales de estructuras de tela que protegen el medio ambiente de partículas químicas nocivas, reducen la erosión del viento y ayudan a mantener los recursos valiosos. RFEM y RWIND se utilizan para el análisis de viento en estructuras como una interacción fluido-estructura unidireccional (FSI). Este artículo muestra cómo calcular y dimensionar estructuras cortavientos utilizando RFEM y RWIND.
RWIND 2 es un programa para la generación de cargas de viento basado en CFD (Dinámica de Fluidos Computacional). La simulación numérica del flujo de viento se genera alrededor de cualquier edificio, incluidos los tipos de geometría irregular o única, para determinar las cargas de viento en las superficies y barras. RWIND 2 se puede integrar con RFEM/RSTAB para el análisis y dimensionamiento de estructuras o como una aplicación independiente.
Este artículo analiza las opciones disponibles para determinar la resistencia nominal a flexión, Mnlb para el estado límite de pandeo local al calcular según el Manual de diseño de aluminio 2020.
Según el Eurocódigo 2 (EN 1992-1-1 [1]), una viga es una barra cuyo vano es al menos 3 veces el canto total de la sección. De lo contrario, el elemento estructural se debe considerar como una viga de gran canto. El comportamiento de las vigas de gran altura (es decir, vigas con un vano menor a 3 veces el canto de la sección) es diferente al comportamiento de las vigas normales (es decir, vigas con un vano 3 veces mayor que el canto de la sección).
Sin embargo, el diseño de vigas de gran canto es necesario a menudo cuando se analizan los componentes estructurales de estructuras de hormigón armado, ya que se utilizan para dinteles de ventanas y puertas, vigas ascendentes y descendentes, la conexión entre losas a dos niveles y sistemas de pórticos.
Los efectos debidos a la carga de nieve están descritos en el CTE español, el Eurocódigo 1, partes 1 a 3 y la norma estadounidense ASCE/SEI 7‑16. Estas normas están incluidas en el nuevo programa RFEM 6 y el asistente de cargas de nieve, el cual facilita la aplicación de estas cargas. Además de esto, la generación más reciente del programa permite especificar la ubicación de construcción en un mapa digital, lo que permite importar automáticamente la zona de carga de nieve. Estos datos, a su vez, son utilizados por el asistente de cargas para simular los efectos debidos a la carga de nieve.
En este artículo, se verifica la idoneidad de una madera de 2x4 dimensiones sujeta a flexión biaxial combinada y compresión axial utilizando el módulo adicional RF-/TIMBER AWC. Las propiedades y la carga del conjunto viga-pilar se basan en el ejemplo E1.8 de los Ejemplos de diseño estructural de madera de AWC 2015/2018.
Por medio del módulo adicional RF-STEEL AISC, es posible el cálculo de barras de acero según la norma AISC 360-16. El siguiente artículo va a comparar los resultados entre el cálculo del pandeo lateral-torsional según el capítulo F y el análisis de los valores propios.
Usando el módulo RF-TIMBER AWC, es posible el diseño de pilares de madera según el método ASD de la norma 2018 NDS. El cálculo preciso de la capacidad de compresión de barras de madera y los factores de ajuste son importantes para las consideraciones de la seguridad y el diseño. El siguiente artículo verificará el pandeo crítico máximo en RF-TIMBER AWC utilizando las ecuaciones analíticas paso a paso para la norma NDS 2018, incluyendo los coeficientes de ajuste de compresión, el valor de cálculo de compresión ajustado y la razón de cálculo final.
Tanto la determinación de las vibraciones naturales como el análisis del espectro de respuesta se realizan siempre en un sistema lineal. Si hay comportamientos no lineales en el sistema, se linealizan y, por lo tanto, no se tienen en cuenta. Las barras rectas trabajando a tracción se utilizan con mucha frecuencia en la práctica. Este artículo mostrará cómo puede mostrarlas aproximadamente de manera correcta en un análisis dinámico.
Para considerar las imprecisiones con respecto a la posición de las masas en un análisis del espectro de respuesta, las normas para el cálculo sísmico especifican reglas que se deben aplicar tanto en el análisis del espectro de respuesta simplificado como en el multimodal. Estas reglas describen el siguiente procedimiento general: La masa del dominio se debe ser desplazar por una cierta excentricidad, lo que da como resultado un momento de torsión.
Con RF-CONCRETE Members es posible calcular pilares de hormigón según ACI 318-14. Es importante calcular con precisión la armadura de cortante y longitudinal del pilar por razones de seguridad. El siguiente artículo confirmará el cálculo de la armadura en RF-CONCRETE Members utilizando ecuaciones analíticas paso a paso según la norma ACI 318-14, incluyendo la armadura de acero longitudinal necesaria, el área de la sección bruta y el tamaño/separación de los estribos.
Al introducir y transferir cargas horizontales como cargas de viento o sísmicas, surgen dificultades crecientes en los modelos en 3D. Para evitar tales problemas, algunas normas (por ejemplo, ASCE 7, NBC) requieren la simplificación del modelo utilizando diafragmas que distribuyen las cargas horizontales a los componentes estructurales que transfieren cargas, pero no pueden transferir la flexión por sí mismos (llamados "Diafragma").
La norma ASCE 7-16 necesita ambos escenarios de casos de carga, el caso de nieve equilibrada y desequilibrada, para una consideración de cálculo de la estructura. Si bien esto puede ser más intuitivo para cubiertas planas o incluso a dos aguas, la determinación de las cargas de nieve es cada vez más difícil para cubiertas en arco debido a la geometría compleja. Sin embargo, con la orientación de ASCE 7-16 sobre cálculos de cargas de nieve para cubiertas curvas y las herramientas de aplicación de cargas eficientes de RFEM, es posible considerar cargas de nieve equilibradas y desequilibradas para un diseño de estructura fiable y seguro.
Cuando una carga de gravedad actúa en una estructura, se produce un desplazamiento lateral. A su vez, se genera un momento de vuelco secundario a medida que la carga de gravedad continúa actuando sobre los elementos en la posición desplazada lateralmente. Este efecto también se conoce como "P-Delta (Δ)". El apartado 12.9.1.6 de la norma ASCE 7-16 y NBC 2015 especifican cuándo se deben considerar los efectos P-Delta al llevar a cabo un análisis de espectro de respuesta modal para el cálculo sísmico.
Cuando se trata de cargas de viento en estructuras de tipo edificio según ASCE 7, se pueden encontrar numerosos recursos para complementar las normas de diseño y ayudar a los ingenieros con esta aplicación de carga lateral. De todas formas, a los ingenieros/as les puede resultar más difícil encontrar recursos parecidos para las cargas de viento o para el tipo de estructuras que no son de construcción. This article will examine the steps to calculate and apply wind loads as per ASCE 7-16 on a circular reinforced concrete tank with a dome roof.