Analiza stateczności dla wyboczenia giętnego, wyboczenia skrętnego i wyboczenia giętno-skrętnego przy ściskaniu
Import długości efektywnych z obliczeń przy użyciu rozszerzenia Stateczność konstrukcji
Graficzne wprowadzanie i kontrola zdefiniowanych podpór węzłowych oraz długości efektywnych w celu analizy stateczności
Określanie długości zastępczych prętów o zbieżnym przekroju
Uwzględnienie położenia stężenia zwichrzenia
Analiza zwichrzenia elementów poddanych obciążeniu momentem
W zależności od normy istnieje wybór między wprowadzaniem wartości Mcr przez użytkownika, metodą analityczną z normy lub wykorzystaniem wewnętrznego solwera wartości własnych
Uwzględnienie panelu usztywniającego i ograniczenia obrotu podczas korzystania z solwera wartości własnych
Graficzne przedstawienie postaci własnej w przypadku zastosowania solwera wartości własnych
Analiza stateczności elementów konstrukcyjnych ze ściskaniem i naprężeniem zginającym, w zależności od normy obliczeniowej
Przejrzyste obliczenia wszystkich niezbędnych współczynników, takich jak współczynniki uwzględniające rozkładu momentów lub współczynniki interakcji
Alternatywne uwzględnienie wszystkich wpływów dla analizy stateczności podczas określania sił wewnętrznych w programie RFEM/RSTAB (analiza drugiego rzędu, imperfekcje, redukcja sztywności, ewentualnie w połączeniu z rozszerzeniem Skręcanie skrępowane (7 stopni swobody))
Układ konstrukcyjny można wprowadzić i obliczyć siły wewnętrzne w programach RFEM i RSTAB. Użytkownik ma pełny dostęp do obszernych bibliotek materiałów i przekrojów.
Projektowanie konstrukcji drewnianych jest w pełni zintegrowane z programami głównymi. Jednocześnie automatycznie uwzględnia konstrukcję i dostępne wyniki obliczeń. Do wymiarowanych obiektów można przydzielić dodatkowe dane dla wymiarowania drewna, takie jak długości efektywne, redukcje przekroju lub parametry obliczeniowe. Elementy można wybrać graficznie w wielu miejscach programu za pomocą funkcji [Wybrać].
Jeśli projekt się powiedzie, nadejdzie czas. Ponieważ program wykonuje za Ciebie wiele procesów. Przeprowadzone kontrole obliczeń są na przykład wyświetlane w tabeli. Tutaj wyświetlane są wszystkie szczegóły wyników. Dzięki przejrzyście przedstawionym wzorom obliczeniowym wyniki są bezproblemowe i zrozumiałe. Nie ma tu efektu "czarnej skrzynki".
Obliczenia są przeprowadzane we wszystkich decydujących miejscach prętów i przedstawiane graficznie w postaci wykresu wyników. Ponadto w wynikach dostępne są szczegółowe grafiki, takie jak rozkład naprężeń w przekroju lub decydujący kształt postaci drgań.
Wszystkie dane wejściowe i wyniki są częścią protokołu wydruku programu RFEM/RSTAB. Zawartość protokołu i jego zakres można wybrać specjalnie dla poszczególnych warunków projektowych.
W przypadku elementów połączenia można sprawdzić, czy utrata stateczności jest istotna. Wymaga to rozszerzenia Stateczność konstrukcji.
Współczynnik obciążenia krytycznego obliczany jest dla wszystkich analizowanych kombinacji obciążeń oraz wybranej liczby postaci własnych dla modelu połączenia. Porównaj najmniejszy współczynnik obciążenia krytycznego z wartością graniczną 15 z normy EN 1993-1-1, rozdz. 5. Ponadto użytkownik może samodzielnie dostosować wartość graniczną. Wynikiem analizy stateczności jest wyświetlenie w programie graficznej postaci odpowiednich postaci drgań.
Na potrzeby analizy stateczności dostosowany model powierzchniowy jest wykorzystywany w programie RFEM do rozpoznania lokalnych kształtów wyboczeniowych. Można również zapisać model analizy stateczności wraz z wynikami i wykorzystać jako osobny plik modelu.
Również w tym przypadku program RSTAB z pewnością Cię przekona. Dzięki wydajnemu jądru obliczeniowemu, zoptymalizowanym połączeniom sieciowym i obsłudze technologii procesorów wielordzeniowych, program do analizy statyczno-wytrzymałościowej firmy Dlubal jest daleko do przodu. Umożliwia to obliczanie bardziej liniowych przypadków obciążeń i kombinacji obciążeń przy użyciu kilku procesorów równolegle, bez konieczności używania dodatkowej pamięci. Macierz sztywności tworzona jest tylko raz. Dzięki temu możliwe jest obliczanie nawet dużych układów za pomocą szybkiego i bezpośredniego solwera.
Musisz obliczyć kilka kombinacji obciążeń w swoich modelach? Program uruchamia równolegle kilka solwerów (po jednym na rdzeń). Następnie każdy solwer oblicza kombinację obciążeń. Prowadzi to do lepszego wykorzystania dostępnych rdzeni.
Podczas obliczeń można dokładnie śledzić rozwój odkształcenia na wykresie, a tym samym dokładnie ocenić zachowanie zbieżności.
Czy wiesz dokładnie, w jaki sposób przebiega wyszukiwanie kształtu? Po pierwsze, proces znajdowania kształtu przypadków obciążeń z kategorią przypadku obciążenia "Wstępne naprężenie" przesuwa początkową geometrię siatki do optymalnie zrównoważonej pozycji za pomocą iteracyjnych pętli obliczeniowych. W tym celu program wykorzystuje metodę Zaktualizowanej Strategii Odniesienia (URS) opracowaną przez prof. Bletzingera i prof. Ramma. Technologię tę charakteryzują kształty równowagi, które po obliczeniach prawie dokładnie odpowiadają początkowo zadanym warunkom brzegowym (ugięcie, siła i naprężenie wstępne).
Oprócz opisu oczekiwanych sił lub zwisów na elementach, zintegrowane podejście URS umożliwia również uwzględnienie sił regularnych. W całym procesie pozwala to na przykład na opisanie ciężaru własnego lub ciśnienia pneumatycznego za pomocą odpowiednich obciążeń elementów.
Wszystkie te opcje dają rdzeniu obliczeniowemu możliwość obliczania postaci antyklastycznych i synklastycznych, które są w równowadze sił, dla geometrii płaskich lub obrotowo-symetrycznych. Aby możliwe było realistyczne zaimplementowanie obu typów, pojedynczo lub razem w jednym środowisku, w obliczeniach dostępne są dwa sposoby opisania wektorów sił do analizy form-finding:
Metoda rozciągania - opis znajdowania kształtu wektorów sił w przestrzeni dla geometrii płaskich
Metoda rzutowania - opis znajdowania kształtu wektorów sił na płaszczyznę rzutowania z ustaleniem położenia poziomego dla geometrii stożkowych
Czy wiecie, że...? Równoważne obciążenia statyczne generowane są oddzielnie dla każdej miarodajnej postaci drgań własnych oraz kierunku wzbudzenia. Obciążenia te są zapisywane w przypadku obciążenia typu Analiza spektrum odpowiedzi, a program RFEM/RSTAB przeprowadza liniową analizę statyczną.
Program wspiera Cię: Moduł określa siły w śrubach na podstawie modelu analitycznego ES i analizuje je automatycznie. Rozszerzenie przeprowadza obliczenia nośności śrub dla przypadków uszkodzeń, takich jak rozciąganie, ścinanie, docisk otworu i przebicie, zgodnie z normą i wyświetla w przejrzysty sposób wszystkie wymagane współczynniki.
Chcesz przeprowadzić wymiarowanie spoin? Spoiny są modelowane jako sprężysto-plastyczne elementy powierzchniowe, a ich naprężenia są odczytywane z modelu analitycznego ES. Kryterium plastyczności ma reprezentować zniszczenie zgodnie z AISC J2-4, J2-5 (wytrzymałość spoin) i J2-2 (wytrzymałość metalu podstawowego). Obliczenia można przeprowadzić z zastosowaniem częściowych współczynników bezpieczeństwa określonych w załączniku krajowym do normy EN 1993-1-8.
Płyty w połączeniu są wymiarowane w sposób plastyczny poprzez porównanie istniejącego odkształcenia plastycznego z dopuszczalnym odkształceniem plastycznym. Domyślne ustawienie wynosi 5% zgodnie z EN 1993-1-5, Załącznik C, ale można to zmienić według specyfikacji użytkownika, a także 5% dla AISC 360.
W programie RFEM są dwie możliwości. Z jednej strony, można określić obciążenie przebijające na podstawie pojedynczego obciążenia (ze słupa/obciążenia/podpory węzłowej) oraz wygładzonego lub niewygładzonego rozkładu siły tnącej wzdłuż obwodu kontrolnego. Z drugiej strony można je zdefiniować jako zdefiniowane przez użytkownika.
Jeżeli jako kryterium obliczeniowe zostanie obliczony stopień wykorzystania nośności na przebicie bez zbrojenia na przebicie, program poda odpowiedni wynik. W przypadku przekroczenia wytrzymałości na ścinanie bez zbrojenia na przebicie program automatycznie określa wymagane zbrojenie na przebicie oraz wymagane zbrojenie podłużne.
Jeżeli między idealnym układem a układem, który uległ deformacji z poprzedniego etapu budowy, pojawią się różnice w geometrii, są one porównywane w programie. Następujące po sobie kolejne etapy budowy obliczane są na bazie układu konstrukcyjnego z odkształceniami i obciążeniami wynikającymi z poprzednich etapu budowy. Obliczenia te są nieliniowe.
Analiza stateczności dla wyboczenia giętnego, wyboczenia skrętnego i wyboczenia giętno-skrętnego przy ściskaniu
Import długości efektywnych z obliczeń przy użyciu rozszerzenia Stateczność konstrukcji
Graficzne wprowadzanie i kontrola zdefiniowanych podpór węzłowych oraz długości efektywnych w celu analizy stateczności
Analiza zwichrzenia elementów poddanych obciążeniu momentem
W zależności od normy istnieje wybór między wprowadzaniem wartości Mcr przez użytkownika, metodą analityczną z normy lub wykorzystaniem wewnętrznego solwera wartości własnych
Uwzględnienie panelu usztywniającego i ograniczenia obrotu podczas korzystania z solwera wartości własnych
Graficzne przedstawienie postaci własnej w przypadku zastosowania solwera wartości własnych
Analiza stateczności elementów konstrukcyjnych ze ściskaniem i naprężeniem zginającym, w zależności od normy obliczeniowej
Przejrzyste obliczenia wszystkich niezbędnych współczynników, takich jak współczynniki uwzględniające rozkładu momentów lub współczynniki interakcji
Alternatywne uwzględnienie wszystkich wpływów dla analizy stateczności podczas określania sił wewnętrznych w programie RFEM/RSTAB (analiza drugiego rzędu, imperfekcje, redukcja sztywności, ewentualnie w połączeniu z rozszerzeniem Skręcanie skrępowane (7 stopni swobody))
RSECTION oblicza wszystkie istotne właściwości przekroju. Obejmuje to również graniczne siły plastyczne. W przypadku przekrojów składających się z różnych materiałów, RSECTION określa idealne właściwości przekroju.
Z RSECTION użytkownik ma wiele możliwości. Można na przykład obliczyć naprężenia wynikające z siły osiowej, dwuosiowych momentów zginających i sił tnących, głównego i drugorzędnego momentu skręcającego oraz bimomentu deplanacyjnego dla dowolnego kształtu przekroju. Należy wyznaczyć naprężenia równoważne zgodnie z hipotezą naprężeń autorstwa von Misesa, Treski i Rankine'a.
Przekonaj się do jądra obliczeń, zoptymalizowanej sieci i nieograniczonej obsłudze systemów wieloprocesorowych. Możliwe są równoległe obliczenia liniowych przypadków obciążeń i kombinacji obciążeń przez kilka procesorów jednocześnie bez dodatkowych wymagań dotyczących pamięci RAM. Macierz sztywności tworzona jest tylko raz. Dzięki temu nawet duże układy konstrukcyjne mogą być obliczane za pomocą szybkiego solwera bezpośredniego. Jeżeli konieczne jest obliczenie wielu kombinacji obciążeń dla modeli, program uruchamia równolegle kilka solwerów (po jednym na każdy rdzeń). Wówczas każdy solwer oblicza kombinację obciążeń, dzięki czemu można lepiej wykorzystać rdzenie. Podczas obliczeń można dokładnie śledzić rozwój odkształcenia na wykresie, a tym samym dokładnie ocenić zachowanie zbieżności.
Wybierz parametry obliczeniowe pasujące do Twojego projektu: Obliczenia można przeprowadzić dla wszystkich typów prętów według analizy liniowej, drugiego rzędu, analizy dużych odkształceń. Ta opcja dostępna jest dla przypadków obciążeń i kombinacji obciążeń. Dodatkowe parametry obliczeniowe można ustawić specjalnie dla przypadków obciążeń oraz kombinacji obciążeń i wyników, co gwarantuje dużą elastyczność w zakresie metody obliczeniowej i szczegółowych specyfikacji.
W RWIND Simulation można podzielić model na różne strefy. Z jednej strony, strefom tym można przydzielić różne chropowatości powierzchni. Z drugiej strony umożliwiają lepszą ocenę lokalną wyników.
Liczba stopni swobody w węźle nie jest już globalnym parametrem obliczeniowym w programie RFEM (6 stopni swobody dla każdego węzła siatki w modelach 3D, 7 stopni swobody dla analizy skręcania skrępowanego). Dlatego każdy węzeł jest zwykle rozpatrywany z inną liczbą stopni swobody, co prowadzi do zmiennej liczby równań w obliczeniach.
Zmiana ta przyspiesza obliczenia, szczególnie dla modeli, które mogą być znacznie uproszczone, takich jak konstrukcje kratownicowe i membranowe.
Program RWIND Simulation umożliwia uwzględnienie chropowatości powierzchni modelu poprzez zastosowanie zmodyfikowanego warunku brzegowego ściany. Model numeryczny opiera się na założeniu, że ziarna o określonej średnicy są rozmieszczone równomiernie na powierzchni modelu, podobnie jak w przypadku papieru ściernego. Średnicę ziaren opisuje parametr Ks, a rozkład parametr Cs. Biorąc pod uwagę chropowatość ścian, symulacja numeryczna przepływu wiatru może lepiej odwzorować rzeczywistość.
Algorytm tworzenia siatki w programie RWIND Simulation wykorzystuje opcję warstwy granicznej do generowania wielowarstwowej siatki przypowierzchniowej. Ilość warstw może być dowolnie definiowana przez użytkownika.
Ta precyzyjna siatka pozwala na realistyczne odwzorowanie prędkości wiatru w obszarach przypowierzchniowych.
SHAPE-THIN określa przekroje efektywne zgodnie z EN 1993-1-3 i EN 1993-1-5 dla profili formowanych na zimno. Opcjonalnie można sprawdzić warunki geometryczne pod kątem możliwości zastosowania normy określonej w EN 1993-1-3, rozdział 5.2.
Efekty miejscowego wyboczenia płyty są uwzględniane zgodnie z metodą zmniejszonej szerokości, a ewentualne wyboczenie usztywnień (niestateczność) jest uwzględniane w przypadku przekrojów usztywnionych zgodnie z EN 1993-1-3, rozdział 5.5.
W celu zoptymalizowania przekroju efektywnego, opcjonalnie można przeprowadzić obliczenia iteracyjne.
Przekroje efektywne można wyświetlić w postaci graficznej.
Więcej informacji na temat wymiarowania profili zimnogiętych w modułach SHAPE-THIN i RF-/STEEL Cold-Formed Sections można znaleźć w artykule technicznym "Wymiarowanie przekrojów ceowych cienkościennych zgodnie z EN 1993-1-3".
Sztywność gazu wynikająca z równania stanu gazu doskonałego pV = nRT może być uwzględniona w nieliniowej analizie dynamicznej.
Funkcja obliczania gazu jest dostępna dla akcelerogramów i wykresów czasowych zarówno dla analizy bezpośredniej, jak i nieliniowej analizy Newmarka. Aby poprawnie określić zachowanie gazu, należy zdefiniować co najmniej dwie warstwy ES dla brył gazowych.
Istnieje możliwość zdefiniowania mimośrodów dla obciążeń prętowych typu obciążenia 'Siła'. Mimośrody można zastosować przy użyciu offsetu bezwzględnego lub względnego.
Aby uwzględnić wszystkie wpływy obciążeń mimośrodowych, zaleca się korzystanie z analizy dużych deformacji.
Jednym kliknięciem myszki można tworzyć różne przypadki obciążeń. Po zakończeniu generowania moduł wyświetla ilość utworzonych przypadków obciążeń oraz kombinacji wyników.
W SHAPE-THIN 8, przekrój efektywny paneli usztywniających można obliczyć zgodnie z EN 1993-1-5, Cl. 4.5.
Naprężenie krytyczne przy wyboczeniu jest obliczane zgodnie z normą EN 1993-1-5, Załącznik A.1 w przypadku paneli wyboczeniowych posiadających co najmniej 3 podłużne elementy usztywniające lub zgodnie z normą EN 1993-1-5, Załącznik A.2 w przypadku paneli wyboczeniowych zawierających jeden lub dwa elementy usztywniające. usztywnienia w strefie ściskanej. Wykonywane są również obliczenia ze względu na wyboczenie skrętne.
Obliczenia z uwzględnieniem stopnia tłumienia (lub tłumienia Lehra's) nie są możliwe w przypadku bezpośredniego całkowania kroku czasowego. Zamiast tego użytkownik musi określić współczynniki tłumienia Rayleigha.
W literaturze technicznej, podany współczynnik tłumienia dla określonych form konstrukcji jest w wielu przypadkach tylko przybliżeniem rzeczywistych współczynników tłumienia. W RF-/DYNAM Pro - Forced Vibrations, możliwe jest wykorzystanie wartości współczynnika tłumienia do określenia tłumienia Rayleigha. Może się ono pojawić w jednej lub dwóch częstotliwościach kątowych, zdefiniowanych przez użytkownika.
Jeżeli pole wyboru 'Liczba przyrostów obciążenia' jest nieaktywne, liczba przyrostów obciążenia zostanie określona automatycznie w programie RFEM w celu efektywnego rozwiązywania zadań nieliniowych.
Zastosowana metoda oparta jest na algorytmie heurystycznym.
Funkcja ta umożliwia automatyczne zagęszczenie siatki ES na powierzchniach. Zagęszczenie siatki jest stopniowe. Na każdym kroku siatka ES jest tworzona na podstawie porównania błędów wyników w poprzednim kroku obliczeń. Błąd numeryczny jest obliczany na podstawie wyników dla elementów powierzchniowych i jest oparty na sformułowaniu energetycznym Zienkiewicza-Zhu.
Ocena błędu jest przeprowadzana dla liniowej analizy statycznej. Wybieramy przypadek obciążenia (lub kombinację obciążeń), dla którego wygenerowana jest siatka ES. Siatka ES jest następnie wykorzystywana do wszystkich obliczeń.
W programie RFEM można definiować krzywe pushover (zwane również krzywymi nośności) i eksportować je do programu Excel.
Moduł dodatkowy RF-DYNAM Pro-Equivalent Loads umożliwia automatyczne generowanie rozkładu obciążenia zgodnie z postacią drgań własnych i eksportowanie go do programu RFEM jako przypadek obciążenia.