La détermination du rapport d'élancement nécessite, entre autres, le moment d'inertie efficace I. Celle-ci peut être calculée à partir de la rigidité en flexion (direction y) de la surface (voir la Figure 3 de la Partie 1). De plus, la surface nette Anet est calculée, pour laquelle les composantes des couches longitudinales dans la direction y sont prises en compte (voir la Figure 2). Étant donné que le centile inférieur de la contrainte critique de flambement doit être déterminé, il convient d'utiliser le cinquième centile pour le module d'élasticité. Pour les bois résineux, il doit être égal aux 2/3 de la valeur moyenne du module d'élasticité selon l'EN 338. Le facteur d'imperfectionc prend en compte l'amplitude de la précambrure en fonction du matériau. Ce facteur pour les barres dans les limites de rectitude est de 0,2 (L/300) pour le bois massif et de 0,1 (L/500) pour le bois lamellé-collé et le bois de placage lamellé-collé. D'autres calculs appliquent le facteur d'imperfection de 0,2 pour le bois lamellé-croisé, selon l'Annexe K.6.3 de [2]. La durée de charge est considérée comme « à moyen terme », ce qui donne un facteur de modification kmod de 0,8 pour le bois lamellé-croisé.
Le facteur d'instabilité qui réduit la résistance en compression est de 0,37. Comme le montre la Figure 2, la valeur de calcul résultante est de 1,44 > 1,00. La vérification de stabilité n'est donc pas réalisée.
Pour éviter le calcul manuel, la vérification de barre équivalente peut également être effectuée dans le module additionnel RF-TIMBER Pro. Pour ce faire, le type de barre « poutre résultante » est assigné à la barre correspondante dans le modèle (voir la Figure 3). Cette poutre résultante n'a pas de rigidité supplémentaire et intègre les efforts internes de surface dans la zone d'intégration définie. Pour pouvoir calculer cette barre dans RF-TIMBER Pro, la section et le matériau correspondants doivent lui être assignés. Dans ce cas, les propriétés de rigidité des Stora Enso CLT 100 C5 s'écartent de la norme. Il est donc nécessaire de créer un nouveau matériau défini par l'utilisateur et d'ajuster les propriétés de rigidité. Afin de représenter correctement les moments d'inertie pour la vérification, une section avec une largeur efficace doit être créée. Celle-ci peut être calculée à l'aide de la rigidité en flexion et de la hauteur de section (voir la Figure 3).
Pour obtenir la même rigidité en flexion pour la barre homogène, nous avons besoin de la section b/h = 92,56 mm/1 000 mm. Ainsi, le moment d'inertie correct est déterminé lors de l'analyse du flambement. Cependant, comme la zone de compression appliquée Anet est trop grande dans ce cas, elle doit être réduite pour le calcul. Cette réduction peut être obtenue par exemple en ajustant la longueur efficace leef. La longueur efficace lef,z,TIMBERPro est définie dans Excel à l'aide de la recherche de valeur cible, qui résulte du facteur d'instabilité efficace ajusté kc,z,ef (voir la Figure 4).
Ainsi, la longueur efficace ajustée considère l'aire de la section différemment de la section efficace dans l'analyse de flambement. La vérification est la même que pour le calcul manuel (voir la Figure 5).
Si des moments fléchissants (dus au vent, par exemple) doivent être disponibles en plus de l'effort normal, ils peuvent être considérés dans RF-TIMBER Pro de la même manière, car le module de section Sz correct est déjà considéré pour la contrainte de flexion. Dans le cas d'une flexion biaxiale, le facteur km peut être multiplié par le facteur bef/bnet dans les paramètres de l'Annexe nationale afin de déterminer correctement le module de section élastique Sy.