Steel Mast
Model to Download
2 March 2021
001564
Description
This model was used to explain the generation of loads resulting from movements.
Model Used in
Keywords
Rotary motion Radial force Rotation Acceleration
Links
Disclaimer
Recommended Events
Timber Beam and Surface Structures | Part 1: Modeling, Load Input, Combinatorics
Webinar 4 May 2021 2:00 PM - 3:00 PM CEST
Eurocode 3 | Steel structures according to DIN EN 1993-1-1
Online Training 6 May 2021 8:30 AM - 12:30 PM CEST
Eurocode 2 | Concrete structures according to DIN EN 1992-1-1
Online Training 12 May 2021 8:30 AM - 12:30 PM CEST
Eurocode 5 | Timber structures according to DIN EN 1995-1-1
Online Training 20 May 2021 8:30 AM - 12:30 PM CEST
RFEM | Structural dynamics and earthquake design according to EC 8
Online Training 2 June 2021 8:30 AM - 12:30 PM CEST
Stability Design in Steel Construction with RFEM and RSTAB
Webinar 1 December 2020 2:00 PM - 2:45 PM CET
Videos
Models to Download
Knowledge Base Articles

New
Generating Loads from Movements
With RFEM, you can generate member, surface or solid loads resulting from movements. Thus, for example, braking or acceleration forces can be generated automatically from linear movements or from rotational movements on the system.
Screenshots
RF-/PLATE-BUCKLING Add-on Module for RFEM/RSTAB | Plate Buckling Analysis for Plates with or Without Stiffeners According to 1993-1-5
RFEM/RSTAB Add-on Module RF-IMP/RSIMP | Generation of Geometric Replacement Imperfections and Pre-deformed Replacement Structures
Extension of the RF-/STEEL Warping Erosion module | Lateral -torsional buckling analyzes of members according to the second -order theory with 7 degrees of freedom
RFEM/RSTAB add-on module RF-/TOWER effective lengths | Determination of effective lengths of lattice towers
RFEM/RSTAB add-on module RF-/JOINTS Steel-Column Base | Hinged and restrained column bases according to EC 3
Product Features Articles

Material Database with Steels According to the Australian Standard AS/NZS 4600:2005
The material database in RFEM, RSTAB and SHAPE-THIN contains steels according to the Australian standard AS/NZS 4600:2005.Frequently Asked Questions (FAQ)
- Is it possible to set user-defined values when viewing solid stress results?
- How are the signs for the release results of a line release and line hinges interpreted?
- How can I create a curved or arched section?
- How can I get the member end forces to design the connections?
- I would like to calculate and design "temporary structures." What do I need for this?
- How can I create a drilled beam in RFEM?
- I design a cross-section created in the SHAPE‑THIN program by using the RF‑STEEL EC3 add-on module, but the program shows the error message "ER006 Invalid type of c/t-part for cross-section of type General." What can I do?
- I would expect the results from my load combination (CO) set to a linear analysis to equal the summation of the results from my load cases (LC) also set to a linear analysis. Why do the results not match?
- A rigid member should only be able to absorb tensile forces or only compressive forces. What are the options for considering these nonlinearities in the calculation?
- Which Dlubal Software programs are required to calculate membrane and tensile structures?
Customer Projects