Knowledge Base

Search





Why Dlubal Software?

Solutions

  • More than 25,000 users in 71 countries
  • One software package for all application areas
  • Short learning time and intuitive handling
  • Service provided by experienced engineers
  • Excellent price/performance ratio
  • Flexible modular concept, extensible according to your needs
  • Scalable license system with single and network licenses
  • Proven software used in many well-known projects

Newsletter

Receive information including news, useful tips, scheduled events, special offers, and vouchers on a regular basis.

  1. Figure 01 - Beam to Beam Connection with "Long" Fin Plate

    Fin Plate Connections:

    Fin plate connections are a popular form of pinned steel connections and are commonly used for secondary beams in steel structures. They can be easily used in beam structures arranged on the top edge, e.g. working platforms. Manufacturing expenditures in the workshop as well as the assembly costs on-site are normally manageable. The design seems to be completed easily and quickly, but has to be put into perspective to a certain extent in the following. Moreover, this connection type is basically possible as pinned beam to beam or pinned beam to column connection, whereas the first case is the more common one in design practice.
  2. Figure 01 - Structural System and Cross-Section Dimension According to [1]

    Modeling of Semi-Rigid Composite Beam Made of Timber as Surface Model

    There are several options to calculate a semi-rigid composite beam. They differ primarily in the type of modeling. Whereas the Gamma method ensures a simple modeling, additional efforts are required when using other methods (e.g. shear analogy) for the modeling which are, however, offset by the much more flexible application compared to the Gamma method.
  3. Figure 01 - Snow Load Zones of Germany

    Snow Load on Monopitch and Duopitch Roofs

    In Germany, DIN EN 1991-1-3 with the National Annex DIN EN 1991-1-3/NA regulates the snow loads. The standard applies to civil engineering works at an altitude of up to 1,500 m above sea level.
  4. Figure 01 - Creep and Relaxation

    Definition of Stress Losses From Relaxation for Prestressed Concrete Design

    When designing prestressed concrete components, the time-dependent stress losses from creeping, shrinkage and relaxation have to be considered. The consideration of relaxation losses when designing prestressed concrete in RF-TENDON and RF-TENDON Design is discussed in detail in the following.
  5. Figure 01 - Template Explorer

    Using Templates in VCmaster

    By using an interface, it is possible to export the RFEM/RSTAB printout report to VCmaster and continue editing there. VCmaster is a word processing program for engineers.

  6. Figure 01 - Structure

    Influcence of Line Load on Insulated Glass Pane

    The proportion of glass when planning a building is increasing. Open, light-flooded buildings represent the modern art of architecture. However, specialized engineers have to face new challenges during their planning. Such an example are ceiling-high glass facades which are loaded by a handrail at the same time. The influence of this loading as well as the calculation of the deformation are shown in this article.
  7. Figure 01 - Setting: Reinforcement Direction With Main Tension Force in the Considered Element

    Secondary Reinforcement According to DIN EN 1992-1-1 9.2.1 to Ensure Ductile Structural Component Behavior

    The secondary reinforcement according to DIN EN 1992-1-1 9.2.1 is used to ensure the desired structural behavior. It should avoid failure without prior notification. The minimum reinforcement has to be arranged independently of the size of the actual loading.
  8. Figure 01 - Transversal Strain

    Orthotropic Material Laws

    Orthotropic material laws are used wherever materials are arranged according to their loading. Examples include fiber-reinforced plastics, trapezoidal sheets, reinforced concrete or timber.

  9. Figure 01 - Example Model

    Punching Shear Design with Definition of Perimeters

    With RF-PUNCH Pro, the punching shear design can be performed according to 6.4, EN 1992-1-1. In the following example, the design according to DIN EN 1992-1-1 will be presented first with automatic design of the inner and outer perimeters and then on the basis of the inner perimeters defined by the user on a simple example.

  10. Figure 01 - Structure with Loading

    Consideration of Holes in Tension Design

    For the tension design according to Clause 6.2.3 EN 1993-1-1, the following formulas are given to determine the tension resistance.

    $\begin{array}{l}\mathrm{Equation}\;6.6:\;{\mathrm N}_{\mathrm{pl},\mathrm{Rd}}\;=\;\frac{\mathrm A\;\cdot\;{\mathrm f}_\mathrm y}{{\mathrm\gamma}_{\mathrm M0}}\\\mathrm{Equation}\;6.7:\;{\mathrm N}_{\mathrm u,\mathrm{Rd}}\;=\;\frac{0.9\;\cdot\;{\mathrm A}_\mathrm{net}\;\cdot\;{\mathrm f}_\mathrm u}{{\mathrm\gamma}_{\mathrm M2}}\end{array}$

1 - 10 of 824

Contact us

Contact to Dlubal

Do you have any questions or need advice?
Contact us or find various suggested solutions and useful tips on our FAQ page.

+49 9673 9203 0

info@dlubal.com

First Steps

First steps

We provide hints and tips to help you get started with the main programs RFEM and RSTAB.

Powerful and Capable Software

“I think the software is so powerful and capable that people will really value its power when they get properly introduced to it.”