Knowledge Base

Search





Why Dlubal Software?

Solutions

  • More than 25,000 users in 71 countries
  • One software package for all application areas
  • Short learning time and intuitive handling
  • Service provided by experienced engineers
  • Excellent price/performance ratio
  • Flexible modular concept, extensible according to your needs
  • Scalable license system with single and network licenses
  • Proven software used in many well-known projects

Newsletter

Receive regular information about news, useful tips, scheduled events, special offers, and vouchers at least once a month.

  1. Figure 01 - Result Diagrams of Gross Cross-Section

    Redistributing Shear Stresses from Null Elements

    SHAPE-THIN allows you to calculate section properties and stresses of any cross‑sections. If a flange or a web is weakened by bolt holes, you can consider this by using null elements. The stresses are subsequently recalculated with the reduced cross‑section values. In this case, it is necessary to pay special attention to shear stresses. By default, these are set to zero in the area of the null elements. When recalculating shear stresses with the reduced cross‑section values and without further adaptation, it turns out that the integral of the shear stresses is no longer equal to the applied shear force. The following example shows in detail how to calculate the shear stress.

  2. Figure 01 - Example

    Imperfections According to EN 1993-1-1 Clause 5.3.2: Bow Imperfection

    According to EN 1993‑1‑1 [1], it is necessary to use the equivalent geometric imperfections with values that reflect the possible effects of all types of imperfections. EN 1993‑1‑1, Clause 5.3, specifies basic imperfections for the global analysis of frames as well as member imperfections.

  3. Figure 01 - Dialog Box 'Generate Wind Loads - Vertical Walls with Roof According to ASCE/SEI 7-16'

    Generating Wind Loads on Walls and Roofs According to ASCE/SEI 7-16

    RFEM and RSTAB allow you to easily consider wind load effects on a three-dimensional building according to ASCE/SEI 7‑16 [1]. This article explains the complex theory of entering wind loads in the software. You can find the wind load under 'Tools' → 'Generate Loads' → 'From Wind Loads'.

  4. Figure 01 - Cutting Pattern of Half Sphere

    Cutting Pattern of Membranes and Cable Elements

    Cable and tensile membrane structures are regarded as very slender and aesthetic building constructions. The partly very complex double-curved shapes can be found using suitable form-finding algorithms. A possible solution is, for example, to search the form via the equilibrium between the surface stress (provided prestress and an additional load such as self-weight, pressure, etc.) and the given boundary conditions.

  5. RF-/STEEL AISC Mode Shapes

    RF-/STEEL AISC Mode Shapes

    After running an analysis in RF-/STEEL AISC, the mode shapes for sets of members can be viewed graphically in a separate window. Select the relevant set of members in the result window and click the [Mode Shapes] button.

  6. Figure 01 - Curtailment of Longitudinal Reinforcement from [1]

    Displaying Curtailment of Longitudinal Reinforcement and Reinforcement Covering Line

    In the case of a huge amount of reinforcement, it might be useful to grade the longitudinal reinforcement of a beam. The grading corresponds to the tensile force distribution. Using RF-CONCRETE Members and CONCRETE, you can specify the curtailment of the reinforcement, which is considered in the automatically proposed reinforcement for the longitudinal reinforcement. When determining this reinforcement proposal, it is necessary to ensure that the envelope of the acting tensile force can be absorbed.

  7. Figure 01 - Graphic Printout to 3D PDF

    Visual Model Check Using Print to 3D PDF

    The 3D PDF functionality allows you to display three-dimensional models from RFEM or RSTAB in a 3D PDF.

  8. Figure 01 - M1: Member Structure in Rendered View

    Downstand Beams, Ribs, T-Beams: Deformation and Deflection in Cracked State

    RFEM and the RF-CONCRETE add-on modules provide various options for the deformation analysis of a T-beam in cracked state (state II). This technical article describes the calculation methods (C) and modelling options (M). Both the calculation methods and the modelling options are not limited to T-beams, but will only be explained using an example of this system.

  9. Figure 01 - Stress-Strain Diagram of Steel (Source: [1])

    Hardening Parameters in Nonlinear Material Models

    Strain hardening is the material ability to reach a higher stiffness by redistributing (stretching) microcrystals in the crystal lattice of the structure. A distinction is made between the material isotropic hardening as scalar quantities or tensorial kinematic hardening.

  10. Figure 01 - Activating Ground Water Level for Soil Profile

    Influence of Ground Water Level on Design in RF-/FOUNDATION Pro

    Using RF-/FOUNDATION Pro, it is possible to perform geotechnical design according to EN 1997‑1 [1] for single foundations. Subsequently, the program displays detailed information about the influence of the ground water level on the selected design according to EN 1997‑1.

1 - 10 of 1182

Contact us

Contact to Dlubal

Do you have any questions or need advice?
Contact us or find various suggested solutions and useful tips on our FAQ page.

+49 9673 9203 0

info@dlubal.com

First Steps

First steps

We provide hints and tips to help you get started with the main programs RFEM and RSTAB.

Powerful and Capable Software

“I think the software is so powerful and capable that people will really value its power when they get properly introduced to it.”