Fascinating customer projects designed with the Dlubal structural analysis software.
Stress-Strain Analysis for RFEM 6 / RSTAB 9
Stress Analysis of Members, Surfaces, and Solids
Customer Projects
In the Stress-Strain Analysis add-on, you can perform a general stress analysis. The program helps you to calculate the existing stresses and compare them with the limit stresses.
During the stress analysis, you can determine the maximum stresses of solids, surfaces, and surface sets (RFEM only), as well as members and member sets. The program documents the governing internal forces for each member. Furthermore, you have the option of an automatic section or thickness optimization, including the export of the modified sections or surface thicknesses to RFEM/RSTAB.
Features
- General stress analysis
- Automatic import of internal forces from RFEM/RSTAB
- Graphical and numerical output of stresses, strains, clearance, and design ratios fully integrated in RFEM/RSTAB
- User-defined specification of the limit stress
- Summary of similar structural components for the design
- Wide range of customization options for graphical output
- Clearly arranged result tables for a quick overview after the design
- Simple traceability of the results due to the complete documentation of the calculation method including all formulas
- High productivity due to the minimal amount of input data required
- Flexibility due to detailed setting options for basis and extent of calculations
- Gray zone display for unimportant value ranges (for the product feature)
Features for Member Design
- Cross-section optimization
- Transfer of optimized sections to RFEM/RSTAB
- Design of any thin-walled section from RSECTION
- Representation of a stress diagram on a section
- Determination of normal, shear, and equivalent stresses
- Output of stress components for the individual member internal force types
- Detailed representation of stresses in all stress points
- Determination of the largest Δσ for each stress point (for example, for fatigue design)
- Colored display of stresses and design ratios for a quick overview of the critical or oversized zones
- Output of parts lists
Features for Surface and Solid Design
- Determination of principal and basic stresses, membrane and shear stresses, as well as equivalent stresses and equivalent membrane stresses
- Stress analysis for structural surfaces including simple or complex shapes
- Equivalent stresses calculated according to different approaches:
- Distortion strain energy hypothesis (von Mises)
- Shear stress hypothesis (Tresca)
- Normal stress hypothesis (Rankine)
- Principal strain hypothesis (Bach)
- Optional optimization of surface thicknesses and data transfer to RFEM
- Output of strains
- Detailed results of individual stress components and ratios in tables and graphics
- Filter function for solids, surfaces, lines, and nodes in tables
- Transverse shear stresses according to Mindlin, Kirchhoff, or user-defined specifications
- Stress evaluation for welds at connection lines between surfaces (see the Product Feature)
Results
After you have completed the design, the program takes care of clearly arranged results. Thus, the program shows you the resulting maximum stresses and stress ratios sorted by section, member/surface, solid, member set, x-location, and so on. In addition to the tabular result values, the add-on shows you the corresponding cross-section graphic with stress points, stress diagram, and values as well. You can relate the design ratio to any kind of stress type. The current location is highlighted in the RFEM/RSTAB model.
In addition to the tabular evaluation, the program offers you even more. You can also graphically check the stresses and design ratios on the RFEM/RSTAB model. It is possible for you to adjust the colors and values individually.
The display of result diagrams of a member or set of members enables you a targeted evaluation. For each design location, you can open the respective dialog box to check the design-relevant section properties and stress components of any stress point. Finally, you have the option of printing the corresponding graphic, including all design details.
Advantages
- Independent of standards, as it is based on physical principles
- Minimal input required
- Design of all RFEM/RSTAB components (members, surfaces, solids, line welds)
- In combination with the Nonlinear Material Behavior add-on, the plastic strain can be compared with the limit strain
Manual | Stress-Strain Analysis
Price
- The limit stress is activated, but my stress ratio is “non-designable” in the Stress-Strain Analysis add-on. What could be the reason?
-
The load distribution on my members looks different when using the Load Transfer surface vs. the Load Wizards. What is the reason?
- I received an error message “Surface of incompatible type... (Surface in upper plane of building story must be of ‘Load transfer’ type)” when running the calculation. What is the reason?
- My beam has a continuous lateral support and therefore lateral torsional buckling (LTB) is not a concern. How do I define the effective length?
- How can I efficiently define line hinges on several surfaces?
- How do I include the overstrength factor(s), Ωo in the ASCE 7 load combinations?
- How do I include the overstrength factor(s) Ωo in the ASCE 7 load combinations?
- How do I include the redundancy factor(s) ρ in the ASCE 7 load combinations?
- My live load is less than or equal to 100 psf. How do I consider the reduced load factor in the ASCE 7 load combinations?
- I do not see the seismic load cases in my generated ASCE 7 load combinations (COs). How do I add them?
Customers who bought this product also bought