Interesting customer projects designed with structural analysis programs by Dlubal Software.
RF-CONCRETE Deflect Add-on Module for RFEM
Analytical Deformation Analysis of Plate Structures
The RF-CONCRETE Deflect add‑on module is an extension of the RF‑CONCRETE module group.
RF‑CONCRETE Deflect integrated in RF‑CONCRETE Surfaces allows for a deflection analysis of plate, slab, and elevated slab structures conforming to standard specifications when performing the analytical serviceability limit state design. The deformation analysis can be performed according to the following standards:
ACI 318 (requires ACI 318 for RFEM)
-
CSA A23.3 (requires CSA A23.3 for RFEM)
-
EN 1992‑1‑1:2004 + A1:2014 (requires EC2 for RFEM)
-
DIN 1045‑1:2008-08 (requires DIN 1045‑1 for RFEM)
-
SIA 262 (requires SIA 262 for RFEM)
-
GB 50010‑2010: Code for Design of Concrete Structures, 1st edition, July 2011 (requires GB 50010 for RFEM)
With RF‑CONCRETE Deflect, you can quickly and easily perform the design for limiting the deflection of reinforced concrete surfaces by considering different cross‑section conditions of uncracked and cracked concrete (state I and state II).
-
Features
- Deformation analyses of reinforced concrete surfaces without or with cracks (state II) by applying the approximation method (for example deformation analysis according to EN 1992-1-1, Cl. 7.4.3 )
- Tension stiffening of concrete applied between cracks
- Optional consideration of creep and shrinkage
- Graphical representation of results integrated in RFEM, for example deformation or sag of a flat slab
- Numerical results clearly arranged in tables and graphical display of the results in the model
- Complete integration of results in RFEM printout report
-
Input
The deformation analysis with RF-CONCRETE Deflect can be activated in the settings for the analytical serviceability limit state design in the RF-CONCRETE Surfaces module. You can also specify here the settings for long-term effects (creep and shrinkage) and for tension stiffening between concrete cracks. The creep coefficient and shrinkage strain are calculated using the specified input parameters or defined individually.
You can specify the deformation limit value individually for each surface or for an entire surface group. The allowable limit value is defined by the maximum deformation. In addition, you should determine whether the design applies to a deformed or non-deformed system.
-
Design
The deformation analysis according to the approximation method defined in standards (for example deformation analysis according to EN 1992-1-1, 7.4.3) applies to the calculation of so-called effective stiffnesses in the finite elements in accordance with the existing limit state of the concrete with or without cracks. These stiffnesses are used to determine the surface deformation by repeated FEM calculation.
The effective stiffness calculation of finite elements takes into account a reinforced concrete cross-section. Based on the internal forces determined at the serviceability limit state in RFEM, the program classifies the reinforced concrete cross-section as "cracked" or "non-cracked". If the tension stiffening at a section should be considered as well, a distribution coefficient (according to EN 1992-1-1, Eq. 7.19, for example) is used. The material behavior of the concrete is determined as linear-elastic in the compression and tension zone until the concrete tensile strength is reached. This is reached exactly in the serviceability limit state.
When considering the creep and shrinkage, the effective stiffnesses are determined at the "cross-section level". The influence of shrinkage and creeping in statically indeterminate models is not considered by this approximation method (for example, in the case of structures restrained on all sides, tensile forces from shrinkage strain are not determined and have to be considered separately). In summary, RF-CONCRETE Deflect calculates deformations in two steps:
- Calculation of effective stiffnesses of the reinforced concrete cross-section assuming linear-elastic conditions
- Calculation of deformation using the effective stiffness with FEM
-
Results
After the calculation, the module shows clearly arranged tables listing the deformation analysis results. All intermediate values are displayed in a comprehensible manner. Graphical representation of design ratios and deformation in RFEM facilitates a quick overview of critical or cracked areas.
Since the design results are displayed by surface or by point including all intermediate results, you can retrace all details of the calculation. The complete integration of results in the RFEM printout report guarantees verifiable structural design.
Contact Us
Do you have any questions about our products or which are best suited for your design projects? Contact us via phone, email, or chat or find suggested solutions and useful tips on our FAQ page available 24/7.
Customer Projects
Price

New
Modal Analysis in RFEM 6 Using a Practical Example
Modal analysis is the starting point for the dynamic analysis of structural systems. This article shows you a summary of how to perform a modal analysis in RFEM 6.

New
Concrete Design | Definition of Effective Slab Widths of T-beams by Segment
Within a member, you can define the integration width and effective slab width of T-beams (ribs) with different widths. The member is divided into segments. The transition between the different flange widths can be either graded or specified as linearly variable. For the reinforced concrete design of the rib, the defined surface reinforcement can be considered as a flange reinforcement.- What is the maximum number of reinforcement groups that can be created in a design case in RF‑CONCRETE Surfaces?
- Is it possible in the RF‑CONCRETE Surfaces add-on module to limit crack widths due to internal restraint and with the customized fct,eff?
-
The limit stress is activated, but my stress ratio is “non-designable” in the Stress-Strain Analysis add-on. What could be the reason?
- In RFEM 6, is it possible to display a graphic with the distribution of the required reinforcement in the DIN A0 format?
- How do I define a member as a cantilever and not as supported at both ends for serviceability or deflection design?
Customers who bought this product also bought
- In RFEM 6, is it possible to display a graphic with the distribution of the required reinforcement in the DIN A0 format?