FAQ 004813 | How can I perform a stability analysis for a tapered member?

Easily learn how to work with the Dlubal Software programs

  • Dlubal Software | Videos

Video

First Steps with RFEM

First steps

We provide hints and tips to help you get started with the basic program RFEM.

Please accept Marketing Cookies to watch this video.

Question

How can I perform a stability analysis for a tapered member?

Answer

Tapered members must not be designed according to the simplified equivalent member method!

For steel structures, the design can be performed by considering the warping torsion or using the General Method. These methods are described in this technical article.

For timber structures, the design can also be performed by considering the warping torsion. The method for timber structures is explained in detail in thiswebinar.

According to the equivalent member method, the design can be performed if the provisions of the explanations for DIN 1052, Section E8.4.2 (3) for variable cross-sections are met. In various sources of technical literature, this method is adopted for Eurocode 5. An example of this can be found in the document on brettschichtholz.de, page 64 ff.

In the RX‑TIMBER program, the design of tapered members is performed according to the equivalent member method. This is briefly explained on a simple example.

Structural System (Figure 01):

  • Span length: 8 m
  • Beam height right: 80 cm
  • Beam height left: 26 cm
  • Roof inclination: 3.9°
No stiffening is defined. The lateral-torsional stability becomes governing with 99% (Figure 02) at the x‑location 1.598 m. The cross-section height is 36.8 cm. However, the slenderness ratio is based on the equivalent cross-section height of 60.9 cm (Figure 03).

The equivalent cross-section height results at the x-location 5.2 m about 0.65 × 8 m = 5.2 m.

If the stiffening is in the middle of the span, for example, the equivalent height for the x‑location changes to 45.3 cm.

Since the stiffening is usually applied over the member length, the height must be calculated according to a special algorithm. The supports are always applied as fixed points and the equivalent heights are calculated, based on the x-locations of the designs.

For the example, the following results: x0.65 = 0.32 x 4 m + 1.598 m = 2.878 m

Keywords

Dlubal FAQ Stability Tapered Equivalent member Taper Frequently Asked Question FAQ about Dlubal Question and Answer about Dlubal

Links

Write Comment...

Write Comment...

  • Views 107x
  • Updated 11/20/2020

Contact us

Do you have any questions about our products or need advice on selecting the products needed for your projects?
Contact us via our free e-mail, chat, or forum support or find various suggested solutions and useful tips on our FAQ page.

(267) 702-2815

info-us@dlubal.com

CSA S16:19 Steel Design in RFEM

CSA S16:19 Steel Design in RFEM

Webinar 03/10/2021 2:00 PM - 3:00 PM EST

Online Training | English

Eurocode 5 | Timber structures according to EN 1995-1-1

Online Training 03/17/2021 8:30 AM - 12:30 PM CET

Online Training | English

Eurocode 3 | Steel structures according to DIN EN 1993-1-1

Online Training 03/18/2021 8:30 AM - 12:30 PM CET

Online Training | English

RFEM | Dynamics | USA

Online Training 03/23/2021 1:00 PM - 4:00 PM EST

Plate and Shell Buckling Utilizing Dlubal Software

Plate and Shell Buckling Utilizing Dlubal Software

Webinar 03/30/2021 2:00 PM - 2:45 PM

Online Training | English

RFEM for Students | USA

Online Training 04/21/2021 1:00 PM - 4:00 PM EST

Online Training | English

RFEM | Timber | USA

Online Training 05/05/2021 1:00 PM - 4:00 PM EST

Online Training | English

Eurocode 3 | Steel structures according to DIN EN 1993-1-1

Online Training 05/06/2021 8:30 AM - 12:30 PM

Online Training | English

Eurocode 2 | Concrete structures according to DIN EN 1992-1-1

Online Training 05/11/2021 8:30 AM - 12:30 PM

Online Training | English

Eurocode 5 | Timber structures according to DIN EN 1995-1-1

Online Training 05/20/2021 8:30 AM - 12:30 PM

Online Training | English

RFEM | Basics | USA

Online Training 06/17/2021 9:00 AM - 1:00 PM EST

The Most Common User Errors With RFEM and RSTAB

The Most Common User Errors With RFEM and RSTAB

Webinar 02/04/2021 2:00 PM - 3:00 PM CET

ADM 2020 Member Design in RFEM

ADM 2020 Member Design in RFEM

Webinar 01/19/2021 2:00 PM - 3:00 PM EST

Dlubal Info Day

Dlubal Info Day Online | December 15, 2020

Webinar 12/15/2020 9:00 AM - 4:00 PM CET

FEA Troubleshooting and Optimization in RFEM

FEA Troubleshooting and Optimization in RFEM

Webinar 11/11/2020 2:00 PM - 3:00 PM EST

Soil-Structure Interaction in RFEM

Soil-Structure Interaction in RFEM

Webinar 10/27/2020 2:00 PM - 2:45 PM CET

NBC 2015 Modal Response Spectrum Analysis in RFEM

NBC 2015 Modal Response Spectrum Analysis in RFEM

Webinar 09/30/2020 2:00 PM - 3:00 PM EST

Documenting Results in the RFEM Printout Report

Webinar 08/25/2020 2:00 PM - 2:45 PM

ACI 318-19 Concrete Design in RFEM

ACI 318-19 Concrete Design in RFEM

Webinar 08/20/2020 2:00 PM - 3:00 PM EST

How to Be More Productive Using RFEM

How to Be More Productive Using RFEM

Webinar 07/07/2020 3:00 PM - 4:00 PM

Introduction to Solid Modeling \n in RFEM

Introduction to Solid Modeling in RFEM

Webinar 06/30/2020 2:00 PM - 3:00 PM EST

Modeling with Solids in RFEM

Modeling with Solids in RFEM

Webinar 06/09/2020 3:00 PM - 3:45 PM