We provide hints and tips to help you get started with the basic program RFEM.
Home Support & Learning Learning Videos KB 000585 | Calculation of warping springs for consideration in lateral -torsional buckling analy...
KB 000585 | Calculation of warping springs for consideration in lateral -torsional buckling analy...
Video
First Steps with RFEM
02/15/2021
002319
Description
In the case of open cross -sections, the torsional load is removed mainly via secondary torsion, since the St. Venant torsional stiffness is low compared to the warping stiffness. Therefore, warping stiffeners in the cross -section are particularly interesting for the lateral -torsional buckling analysis, as they can significantly reduce the rotation. For this, end plates or welded stiffeners and sections are suitable.
Keywords
Dlubal Knowledge Base Warp spring Warping stiffness Warping Warping torsion Lateral-torsional buckling Torsional Buckling Stability Transverse stiffeners Transverse bulkhead Dlubal KB Knowledge Base Technical Contribution
Reference
[1] | Petersen, C.: Statik und Stabilität der Baukonstruktionen, 2. Auflage. Wiesbaden: Vieweg, 1982 |
Links
Contact us
Do you have any questions about our products or need advice on selecting the products needed for your projects?
Contact us via our free e-mail, chat, or forum support or find various suggested solutions and useful tips on our FAQ page.
Recommended Events
Timber Beam and Surface Structures | Part 1: Modeling, Load Input, Combinatorics
Webinar 05/04/2021 2:00 PM - 2:45 PM CEST
Eurocode 3 | Steel structures according to DIN EN 1993-1-1
Online Training 05/06/2021 8:30 AM - 12:30 PM CEST
Eurocode 2 | Concrete structures according to DIN EN 1992-1-1
Online Training 05/12/2021 8:30 AM - 12:30 PM CEST
Eurocode 5 | Timber structures according to DIN EN 1995-1-1
Online Training 05/20/2021 8:30 AM - 12:30 PM CEST
RFEM | Structural dynamics and earthquake design according to EC 8
Online Training 06/02/2021 8:30 AM - 12:30 PM CEST
Videos
Models to Download
Knowledge Base Articles

New
In the case of open cross -sections, the torsional load is removed mainly via secondary torsion, since the St. Venant torsional stiffness is low compared to the warping stiffness.
Screenshots
RF-/PLATE-BUCKLING Add-on Module for RFEM/RSTAB | Plate Buckling Analysis for Plates with or Without Stiffeners According to 1993-1-5
RFEM/RSTAB Add-on Module RF-IMP/RSIMP | Generation of Geometric Replacement Imperfections and Pre-deformed Replacement Structures
Extension of the RF-/STEEL Warping Erosion module | Lateral -torsional buckling analyzes of members according to the second -order theory with 7 degrees of freedom
RFEM/RSTAB add-on module RF-/TOWER effective lengths | Determination of effective lengths of lattice towers
RFEM/RSTAB add-on module RF-/JOINTS Steel-Column Base | Hinged and restrained column bases according to EC 3
RFEM/RSTAB add-on module RF-/STEEL BS | Design of steel members according to BS 5950 or BS EN 1993-1-1
RFEM add-on module RF-LOAD-HISTORY | Consideration of plastic deformations from previous load conditions
Product Features Articles

SHAPE-THIN determines the effective cross-sections according to EN 1993-1-3 and EN 1993-1-5 for cold-formed sections. You can optionally check the geometric conditions for the applicability of the standard specified in EN 1993‑1‑3, Section 5.2.
The effects of local plate buckling are considered according to the method of reduced widths and the possible buckling of stiffeners (instability) is considered for stiffened sections according to EN 1993-1-3, Section 5.5.
As an option, you can perform an iterative calculation to optimize the effective cross-section.
You can display the effective cross-sections graphically.
Read more about designing cold-formed sections with SHAPE-THIN and RF-/STEEL Cold-Formed Sections in this technical article: Design of a Thin-Walled, Cold-Formed C-Section According to EN 1993-1-3.
Frequently Asked Questions (FAQ)
- How can I enter a head plate at a frame joint for the stability analysis of a frame beam in STEEL EC3?
- I am trying to manually check the deformations from the CRANEWAY add-on module. However, I obtain great deviations. How to explain the differences?
- What should be considered when using a failure of columns under tension in the RF‑/DYNAM Pro – Equivalent Loads add-on module?
- Why is there no stability analysis displayed in the results despite the activation of the stability analysis in RF‑/STEEL EC3?
- How can I model and design a crane runway girder with Dlubal Software?
- Is it possible to set user-defined values when viewing solid stress results?
- Why do I get large differences for the design of a longitudinally stiffened buckling panel in comparison with the German and Austrian National Annex?
- How can I create a curved or arched section?
- How are the signs for the release results of a line release and line hinges interpreted?
Customer Projects