CONCRETE Add-on Module for RSTAB

Product Video: CONCRETE Add-on Module

Webinar: Design of Concrete Structures in RFEM 5


Receive regular information about news, useful tips, scheduled events, special offers, and vouchers at least once a month.

Linear and Nonlinear Analysis of Reinforced Concrete Members with Reinforcement Concept

CONCRETE is an RSTAB add‑on module for reinforced concrete design of member elements. It provides options for the evaluation of RSTAB internal forces in various design cases. In this way, it is possible to quickly calculate alternative designs using different concrete strength classes or modified cross‑sections.

The design is carried out for uniaxial and biaxial bending with axial force as well as shear and torsion. The corresponding extensions enable the design according to the following standards:

Optionally, it is possible to perform fire resistance design for rectangular and circular cross‑sections according to:

  1. Features

    • Import of results from RSTAB
    • Integrated material and cross-section library
    • The module extension EC2 for RSTAB allows for design of reinforced concrete according to EN 1992-1-1 (Eurocode 2) and the following National Annexes:
      • United Kingdom NA to BS EN 1992-1-1:2004/NA:2005 (United Kingdom)
      •  ÖNORM B 1992-1-1:2011-12 (Austria)
      • Belarus TKP EN 1992-1-1:2009 (Belarus)
      • Belgium NBN EN 1992-1-1 ANB:2010 for design at normal temperature, and EN 1992-1-2 ANB:2010 for fire resistance design (Belgium)
      • Bulgaria BDS EN 1992-1-1:2005/NA:2011 (Bulgaria)
      • Cyprus NA to CYS EN 1992-1-1:2004/NA:2009 (Cyprus)
      •  CSN EN 1992-1-1/NA:2016-05 (Czech Republic)
      •  DS/EN 1992-1-1 DK NA:2013 (Denmark)
      •  SFS EN 1992-1-1/NA:2007-10 (Finland)
      •  NF EN 1992-1-1/NA:2007-03 (France)
      •  DIN EN 1992-1-1/NA/A1:2015-12 (Germany)
      •  UNI EN 1992-1-1/NA:2007-07 (Italy)
      •  LVS EN 1992-1-1:2005/NA:2014 (Latvia)
      •  LST EN 1992-1-1:2005/NA:2011 (Lithuania)
      •  MS EN 1992-12-12:2010 (Malaysia)
      •  NEN-EN 1992-1-1+C2:2011/NB:2016 (Netherlands)
      •  NS EN 1992-1-1:2004-NA:2008 (Norway)
      •  PN EN 1992-1-1/NA:2010 (Poland)
      •  NP EN 1992-1-1/NA:2010-02 (Portugal)
      •  SR EN 1992-1-1:2004/NA:2008 (Romania)
      •  SS EN 1992-1-1/NA:2008-06 (Singapore)
      •  STN EN 1992-1-1/NA:2008-06 (Slovakia)
      •  SIST EN 1992-1-1:2005/A101:2006 (Slovenia)
      •  UNE EN 1992-1-1/NA:2013 (Spain)
      •  SS EN 1992-1-1/NA:2008 (Sweden)

    In addition to the National Annexes (NA) listed above, you can also define a specific NA, applying user‑defined limit values and parameters.
    • Optional presetting of partial safety factors, reduction factors, neutral axis depth limitation, material properties, and concrete cover
    • Determination of longitudinal, shear, and torsional reinforcement
    • Design of tapered members
    • Cross‑section optimization
    • Representation of minimum and compression reinforcement
    • Determination of editable reinforcement concept
    • Crack width analysis with optional increase of the required reinforcement in order to keep the defined limit values of the crack width analysis
    • Nonlinear calculation with consideration of cracked cross‑sections (for EN 1992‑1‑1:2004 and DIN 1045‑1:2008)
    • Consideration of tension stiffening
    • Consideration of creep and shrinkage
    • Deformations in cracked sections (state II)
    • Graphical representation of all result diagrams
    • Fire resistance design according to the simplified method (zone method) in compliance with EN 1992‑1‑2 for rectangular and circular cross‑sections. Thus, fire resistance design of brackets is possible as well.
  2. Reinforcement settings of columns


    After opening the program, you can define the standard and method according to which the design is performed. The ultimate and the serviceability limit state can be designed according to the linear and the nonlinear calculation method. Load cases, load combinations or result combinations are assigned to different calculation types then. In other input windows, you can define materials and cross‑sections. In addition, it is possible to assign parameters for creep and shrinkage. Creep and shrinkage coefficients are directly adjusted, depending on the age of the concrete.

    Support geometry is determined by means of design‑relevant data such as support widths and types (direct, monolithic, end, or intermediate support), redistribution of moments as well as shear force and moment reduction. CONCRETE recognizes the support types from the RSTAB model automatically.

    A segmented window includes the specific reinforcement data such as diameters, the concrete cover and curtailment type of reinforcements, number of layers, cutting ability of links and the anchorage type. In the case of the fire resistance design, it is necessary to define the fire resistance class, the fire‑related material properties as well as the cross-section side exposed to fire. Members and sets of members can be summarized in special "reinforcement groups", each defined by different design parameters.

    You can adjust the limit value of the maximum crack width in the case of crack width analysis. The geometry of tapers is to be determined additionally for the reinforcement.

  3. Error messages


    Before the calculation starts, you should check the input data using the program function. Then, the CONCRETE add‑on module searches the results of relevant load cases, load as well as result combinations. If these cannot be found, RSTAB starts the calculation to determine the required internal forces.

    Considering the selected design standard, the required reinforcement areas of the longitudinal and the shear reinforcement as well as the corresponding intermediate results are calculated. If the longitudinal reinforcement determined by the ultimate limit state design is not sufficient for the design of the maximum crack width, it is possible to increase the reinforcement automatically until the defined limit value is reached.

    The design of potentially unstable structural components is possible using a nonlinear calculation. According to a respective standard, there are different approaches available.

    The fire resistance design is performed according to a simplified calculation method in compliance with EN 1992‑1‑2, 4.2. The module uses the zone method mentioned in Annex B2. Furthermore, you can consider the thermal strains in longitudinal direction and the thermal precamber additionally arising from asymmetrical effects of fire.

  4. Representation of results


    After the calculation, the module shows clearly arranged tables listing the required reinforcement and the results of the serviceability limit state design, including all intermediate values. In addition to the tables, current stresses and strains in a cross‑section are represented graphically.

    The reinforcement concepts of the longitudinal and the shear reinforcement including sketches are documented in accordance with current practice. It is possible to edit the reinforcement proposal and to adjust for example the number of members and the anchorage. The modifications will be updated automatically.

    A concrete cross‑section including reinforcement can be visualized in a 3D rendering. In this way, the program provides an optimal documentation option to create reinforcement drawings including steel schedule.

    Crack width analyses are performed using the selected reinforcement of internal forces in the serviceability limit state. The result output covers steel stresses, the minimum reinforcement, limit diameters, the maximum bar spacing as well as crack spacing and the maximum crack widths.

    As a result of the nonlinear calculation, there are the ultimate limit states of the cross‑section with defined reinforcement (determined linear elastically) as well as effective deflections of the member considering stiffness in cracked state.

Contact us


Do you have any questions about our products? Do you need advice for your current project? 
Contact us or find various suggested solutions and useful tips on our FAQ page.

+49 9673 9203 0

Customer Projects

Customer Projects designed by Dlubal Software products

Interesting customer projects designed with the structural analysis programs by Dlubal Software.

Price (VAT excl.)

810.00 USD

Price is only valid for the software usage in United States.

RSTAB Main Program
RSTAB 8.xx

Main Program

The structural engineering software for design of frame, beam and truss structures, performing linear and nonlinear calculations of internal forces, deformations, and support reactions

RSTAB Steel and Aluminium Structures
STEEL 8.xx

Add-on Module

Stress analysis of steel members

RSTAB Steel and Aluminium Structures
STEEL EC3 8.xx

Add-on Module

Design of steel members according to Eurocode 3

RSTAB Concrete Structures
EC2 for RSTAB 8.xx

Module Extension for RSTAB

Extension of the modules for reinforced concrete design by the Eurocode 2 design


Add-on Module

Stability analysis according to the eigenvalue method

RSTAB Timber Structures
TIMBER Pro 8.xx

Add-on Module

Timber design according to Eurocode 5, SIA 265 and/or DIN 1052

RSTAB Steel and Aluminium Structures
FE-LTB 8.xx

Add-on Module

Lateral-torsional buckling analysis of members according to the second-order analysis (FEM)

RSTAB Connections

Add-on Module

Design of rigid bolted frame joints according to Eurocode 3 or DIN 18800

RSIMP 8.xx

Add-on Module

Generation of equivalent geometric imperfections and pre-deformed initial structures for nonlinear calculations


Add-on Module

Generation of load cases from moving loads for members and sets of members


Add-on Module

Deformation and deflection analysis of members and sets of members

RSTAB Steel and Aluminium Structures
STEEL Warping Torsion 8.xx

Module Extension for STEEL EC3

Warping torsion analysis according to the second-order theory with 7 degrees of freedom