9997x
001681
2021-01-07

Determinación de la rigidez elástica al giro ideal para apoyos laterales de barras a pandeo

Si una barra está apoyada lateralmente para evitar el pandeo debido a una fuerza axil de compresión, se debe asegurar que el apoyo lateral sea realmente capaz de evitar el pandeo. Por lo tanto, el objetivo de este artículo es determinar la rigidez elástica al giro ideal de un apoyo lateral utilizando el modelo de Winter.

Según George Winter, la rigidez elástica ideal es aquella que es al menos necesaria para evitar completamente el pandeo lateral de la barra principal con respecto a su carga crítica de pandeo y actuar en consecuencia como un apoyo completo. Winter habla de "arriostramiento completo". Según esto, el paso por cero de la curva de pandeo debe ubicarse en este muelle de apoyo, de modo que la curva de pandeo en sí tenga dos o más ondas en lugar de una.

En el modelo de Winter, se considera una barra sometida a compresión idealmente recta con extremos articulados en ambos lados, y que está restringida en su mitad por un muelle de apoyo. Para determinar la rigidez elástica ideal, Winter desarrolló el modelo idealizado que se muestra en la imagen 01.

La liberación teórica se basa en la suposición de un punto de inflexión en la curva de pandeo por flexión, con las longitudes del vano iguales. Si la carga crítica de pandeo Pe se aplica como un esfuerzo axil de compresión y la barra se desplaza por la dimensión w en la región del muelle del apoyo, obtenemos la rigidez elástica Cideal, después de despejar la zona alrededor de la liberación teórica mediante cortes imaginarios y ajustando condiciones al alza para el equilibrio de momentos.

Esta correlación entre la rigidez elástica y la carga crítica de pandeo da como resultado la función que se muestra en la imagen 02. Por lo tanto, se produce una forma de pandeo con desplazamiento lateral en la región del muelle de apoyo para rigideces elásticas menores que Cideal.

La carga crítica Pe se puede determinar con los módulos adicionales RSBUCK y RF-STABILITY, o bien manualmente, como se indica a continuación.

Determinación de la rigidez elástica ideal descrita por un ejemplo

En el modelo (imagen 03), una barra a compresión (IPE 400) con extremos articulados y los parámetros E = 21.000 kN/cm², Iz = 1.318 cm 4 y L = 5 m está coaccionada en el medio por un muelle de apoyo.

Esto da como resultado una carga crítica Pe de 1.089 kN, que da como resultado una rigidez elástica Cideal para el muelle de apoyo definido en el centro de la barra de 436 kN/m.

Determinación de la fuerza de estabilización en el muelle de apoyo utilizando el ejemplo de una barra a pandeo con una imperfección

Después de realizar pruebas de carga última en pilares con pandeo, además de las consideraciones teóricas mencionadas anteriormente, determinamos que la rigidez elástica teóricamente ideal es insuficiente para pilares con imperfecciones geométricas.

En consecuencia, la deformación w de la imagen 01 se complementa con la predeformación de w0 a wtot.

wtot = w + w0

Después de establecer el equilibrio de momentos sobre la articulación teórica (imagen 01), el resultado es:
P ⋅ (w + w0 ) = C ⋅ w ⋅ L / 2

Esto da como resultado:

Y para Cideal = 2 ⋅ Pe / L:

Basándose en estas ecuaciones, la fuerza estabilizadora Fc da como resultado:

Por lo tanto, la fuerza de estabilización Fc se puede determinar a partir de los siguientes parámetros:

  • Fuerza de compresión existente P = 500 kN
  • Vano entre apoyo y muelle de apoyo L = 5,00 m
  • Imperfección de curvatura w0 = Ltotal / 300 = 10 / 300 = 0,0333 m

Carga crítica Pe = 1.089 kN

Esto da como resultado una carga estabilizadoraFc = 12,3 kN. RFEM determina 11,7 kN.

Conclusión

Para comprobar la exactitud de la rigidez elástica determinada, puede consultar los resultados de RF-STABILITY. La primera deformada del modo es una curva de pandeo de onda doble con paso por cero en el nivel del muelle del apoyo, mientras que la segunda deformada es una curva de pandeo de una onda apoyada por el muelle del apoyo (imagen 04). Ambos tienen aproximadamente la misma carga crítica de pandeo.


Autor

El Sr. Ackermann es la persona de contacto para consultas de ventas.

Enlaces
Referencias
  1. Krahwinkel, M. (2001). (2001). Zur Beanspruchung stabilisierender Konstruktionen im Stahlbau. Düsseldorf: VDI.


;