Home Downloads & Info Examples and Tutorials Structural Analysis Models to Download Cable Between Supports and Cantilevers
Cable Between Supports and Cantilevers
Model to Download
Description
This model was used to demonstrate the load types 'Initial Prestress' and 'End Prestress'.
Model Used in
Keywords
Prestress Initial prestress End prestress
Links
Disclaimer
Recommended Events
Timber Beam and Surface Structures | Part 1: Modeling, Load Input, Combinatorics
Webinar 4 May 2021 2:00 PM - 3:00 PM CEST
Eurocode 3 | Steel structures according to DIN EN 1993-1-1
Online Training 6 May 2021 8:30 AM - 12:30 PM CEST
Eurocode 2 | Concrete structures according to DIN EN 1992-1-1
Online Training 12 May 2021 8:30 AM - 12:30 PM CEST
Eurocode 5 | Timber structures according to DIN EN 1995-1-1
Online Training 20 May 2021 8:30 AM - 12:30 PM CEST
RFEM | Structural dynamics and earthquake design according to EC 8
Online Training 2 June 2021 8:30 AM - 12:30 PM CEST
Stability Design in Steel Construction with RFEM and RSTAB
Webinar 1 December 2020 2:00 PM - 2:45 PM CET
Videos
Models to Download
Knowledge Base Articles

New
Using Load Type 'End Prestress'
Until now, the load type prestress has always been an initial prestress in the Dlubal Software programs. The defined load magnitude was applied and, depending on the stiffness of the surrounding system, the prestress remained more or less as axial force in the cable.
Screenshots
RF-/PLATE-BUCKLING Add-on Module for RFEM/RSTAB | Plate Buckling Analysis for Plates with or Without Stiffeners According to 1993-1-5
RFEM/RSTAB Add-on Module RF-IMP/RSIMP | Generation of Geometric Replacement Imperfections and Pre-deformed Replacement Structures
Extension of the RF-/STEEL Warping Erosion module | Lateral -torsional buckling analyzes of members according to the second -order theory with 7 degrees of freedom
RFEM/RSTAB add-on module RF-/TOWER effective lengths | Determination of effective lengths of lattice towers
RFEM/RSTAB add-on module RF-MOVE/RSMOVE | Load case generation for members from moving load positions
RFEM/RSTAB add-on module RF-/JOINTS Timber-Timber to Timber | Design of direct timber connections according to Eurocode 5
Product Features Articles

SHAPE-THIN determines the effective cross-sections according to EN 1993-1-3 and EN 1993-1-5 for cold-formed sections. You can optionally check the geometric conditions for the applicability of the standard specified in EN 1993‑1‑3, Section 5.2.
The effects of local plate buckling are considered according to the method of reduced widths and the possible buckling of stiffeners (instability) is considered for stiffened sections according to EN 1993-1-3, Section 5.5.
As an option, you can perform an iterative calculation to optimize the effective cross-section.
You can display the effective cross-sections graphically.
Read more about designing cold-formed sections with SHAPE-THIN and RF-/STEEL Cold-Formed Sections in this technical article: Design of a Thin-Walled, Cold-Formed C-Section According to EN 1993-1-3.
Frequently Asked Questions (FAQ)
- I am trying to manually check the deformations from the CRANEWAY add-on module. However, I obtain great deviations. How to explain the differences?
- In RF-/TIMBER AWC and RF-/TIMBER CSA, I receive the error that says torsion limit exceeded. How do I bypass this error message?
- Why is the strength always reduced by the kmod value of 0.6 during the calculation in the RF‑LAMINATE add‑on module, although I have load combinations with variable loads?
- Can I consider a reduction of the stiffness according to the German regulation NCI NA.5.9 in TIMBER Pro?
- What should be considered when using a failure of columns under tension in the RF‑/DYNAM Pro – Equivalent Loads add-on module?
- Why is there no stability analysis displayed in the results despite the activation of the stability analysis in RF‑/STEEL EC3?
- I have selected all available members for design in RF-/TIMBER Pro. Why are tapered members not designed?
- How can I model and design a crane runway girder with Dlubal Software?
- When performing the fire resistance design with TIMBER Pro, I get the error 10001. How can I fix the error?
- Is it possible to set user-defined values when viewing solid stress results?
Customer Projects