RF-CONCRETE Add-on Module for RFEM

Product Video: RF-CONCRETE Members Add-on Module

Webinar: Reinforcement and Design of Concrete Surfaces in RFEM 5

Webinar: Design of Concrete Structures in RFEM 5


Receive regular information about news, useful tips, scheduled events, special offers, and vouchers at least once a month.

Reinforced Concrete Design of Members and Surfaces

The RF-CONCRETE add‑on module for the design of structural components made of reinforced concrete consists of two separate parts:

  • RF-CONCRETE Surfaces designs plates, walls, planar structures, and shells for the ultimate and the serviceability limit state.
  • RF-CONCRETE Members designs member elements of reinforced concrete structures.

RF-CONCRETE performs reinforced concrete design of surfaces, members, and sets of members for the ultimate and the serviceability limit state. The corresponding extensions enable the design according to the following standards:

Optionally, it is possible to perform the fire resistance design of rectangular and circular cross‑sections according to:

The RF‑CONCRETE add‑on module is also available in a well‑priced 2D version.

  1. Features

    • Automatic import of internal forces from RFEM
    • Ultimate limit state and serviceability limit state design
    • The module extension EC2 for RFEM allows for design of reinforced concrete members according to Eurocode 2 (EN 1992‑1‑1:2004) and the following National Annexes:
      • United Kingdom NA to BS EN 1992-1-1:2004/NA:2005 (United Kingdom)
      •  ÖNORM B 1992-1-1:2011-12 (Austria)
      • Belarus TKP EN 1992-1-1:2009 (Belarus)
      • Belgium NBN EN 1992-1-1 ANB:2010 (Belgium)
      • Bulgaria BDS EN 1992-1-1:2005/NA:2011 (Bulgaria)
      • Cyprus NA to CYS EN 1992-1-1:2004/NA:2009 (Cyprus)
      •  CSN  1992-1-1/NA:2016-05 (Czech Republic)
      •  EN 1992-1-1 DK NA:2013 (Denmark)
      •  SFS EN 1992-1-1/NA:2007-10 (Finland)
      •  NF EN 1992-1-1/NA:2007-03 (France)
      •  DIN EN 1992-1-1/NA/A1:2015-12 (Germany)
      •  UNI EN 1992-1-1/NA:2007-07 (Italy)
      •  LVS EN 1992-1-1:2005/NA:2014 (Latvia)
      •  LST EN 1992-1-1:2005/NA:2011 (Lithuania)
      •  MS EN 1992-1-1:2010 (Malaysia)
      •  NEN-EN 1992-1-1+C2:2011/NB:2016 (Netherlands)
      •  NS EN 1992-1-1:2004-NA:2008 (Norway)
      •  PN EN 1992-1-1/NA:2010 (Poland)
      •  NP EN 1992-1-1/NA:2010-02 (Portugal)
      •  SR EN 1992-1-1>2004/NA:2008 (Romania)
      •  SS EN 1992-1-1/NA:2008-06 (Singapore)
      •  STN EN 1992-1-1/NA:2008-06 (Slovakia)
      •  SIST EN 1992-1-1:2005/A101:2006 (Slovenia)
      •  UNE EN 1992-1-1/NA:2013 (Spain)
      •  SS EN 1992-1-1/NA:2008 (Sweden)

    In addition to the National Annexes (NA) listed above, you can also define a specific NA, applying user‑defined limit values and parameters.
    • Flexibility due to detailed setting options for basis and extent of calculations
    • Quick and clear results output for an overview of the distribution of results immediately subsequent to the design
    • Graphical results output integrated in RFEM, for example required reinforcement
    • Clearly-arranged numerical results output displayed in tables and option to represent results graphically in the structure
    • Complete integration of data output in the RFEM printout report
  2. RF-CONCRETE Members - 1.1 General Data

    Features of RF-CONCRETE Members

    • Determination of longitudinal, shear and torsional reinforcement
    • Representation of minimum and compression reinforcement
    • Determination of neutral axis depth, concrete and steel strains
    • Design of member cross-sections affected by bending on two axes
    • Design of tapered members
    • Determination of deformation in cracked sections (state II), for example according to EN 1992‑1‑1, 7.4.3
    • Consideration of tension stiffening
    • Consideration of creep and shrinkage
    • Itemization of reasons for failed design
    • Design details for all design locations for better traceability of reinforcement determination
    • Options to optimize cross‑sections
    • Visualization of concrete cross‑section with reinforcement in 3D rendering
    • Output of complete steel schedule
    • Fire resistance design according to the simplified method (zone method) in accordance with EN 1992‑1‑2 for rectangular and circular cross‑sections
    • Optional extension of the RF‑CONCRETE Members add‑on module with a nonlinear calculation of frameworks for the ultimate and the serviceability limit state. The extension allows for design of potentially unstable structural components by means of a nonlinear calculation, or a nonlinear deformation analysis of 3D frameworks. Find more information under the product description of the RF‑CONCRETE NL add‑on module.
  3. RF-CONCRETE Surfaces - 1.1 General Data

    Features of RF-CONCRETE Surfaces

    • Free definition of two or three reinforcement layers in the ultimate limit state
    • Vectorial representation of the main stress directions of internal forces allowing optimal orientation adjustment of the third reinforcement layer to the actions
    • Design alternatives to avoid compression or shear reinforcement
    • Design of surfaces as deep beams (theory of membranes)
    • Option to define basic reinforcements for top and bottom reinforcement layer
    • Definition of designed reinforcement for serviceability limit state design
    • Results output in grid points of any selected grid
    • Optional extension of the module with nonlinear deformation analysis. The calculation is performed in RF‑CONCRETE Deflect by reducing the stiffness according to the standard, or in RF‑CONCRETE NL by the general nonlinear calculation determining the stiffness reduction in an iterative process.
    • Design with design moments at column edges
    • Itemization of reasons for failed design
    • Design details of all design locations for better traceability of reinforcement determination 
    • Export of isolines for the longitudinal reinforcement in a DXF file for further use in CAD programs as a basis for reinforcement drawings
  4. Detailed settings for analysis in RF-CONCRETE Surfaces


    In order to facilitate the data input, there are surfaces, members, sets of members, materials, surface thicknesses, and cross-sections preset in RFEM. It is possible to select the elements graphically using the [Select] function. The program provides access to the global material and cross-section libraries. Load cases, load combinations, and result combinations can be combined in various design cases. You can enter all geometric and standard-specific reinforcement settings for the reinforced concrete design in a segmented window. The geometry entries in both RF‑CONCRETE modules differ from each other.

    • In the RF‑CONCRETE Members add‑on module, you can define for example the curtailment of rebars, the number of layers, the cutting ability of links, and the anchorage type. For the fire resistance design of reinforced concrete members, you have to define the fire resistance class, the fire‑related material properties as well as the cross‑section sides exposed to fire.
    • In the RF‑CONCRETE Surfaces add‑on module, it is necessary to specify for example the concrete cover, the reinforcement direction, the minimum and the maximum reinforcement, the basic reinforcement to be applied or the designed longitudinal reinforcement as well as the rebar diameter.

    Surfaces or members can be summarized in special "reinforcement groups", each defined by different design parameters. In this way, it is possible to efficiently calculate alternative designs with different boundary conditions or modified cross‑sections.

  5. RF-CONCRETE Surfaces - Graphical results output for complete structural model


    After the calculation, the module shows clearly arranged tables listing the required reinforcement and the results of the serviceability limit state design. In addition, all intermediate values are displayed as well.

    The results of RF‑CONCRETE Members are displayed as result diagrams of each member. The reinforcement concepts of the longitudinal and the shear reinforcement including sketches are documented in accordance with current practice. It is possible to edit the reinforcement proposal and to adjust for example the number of members and the anchorage. The modifications will be updated automatically. A concrete cross‑section including reinforcement can be visualized in a 3D rendering. In this way, the program provides an optimal documentation option to create reinforcement drawings including steel schedule.

    The result of RF‑CONCRETE Surfaces can be displayed graphically as isolines, isosurfaces, or numeric values. It is possible to sort the longitudinal reinforcement display by required reinforcement, required additional reinforcement, designed basic or additional reinforcement, and by designed total reinforcement. The isolines of the longitudinal reinforcement can be exported as a DXF file for further use in CAD programs as a basis for reinforcement drawings.

Contact us


Do you have any questions about our products? Do you need advice for your current project? 
Contact us or find various suggested solutions and useful tips on our FAQ page.

+49 9673 9203 0


Customer Projects

Customer Projects designed by Dlubal Software products

Interesting customer projects designed with the structural analysis programs by Dlubal Software.

Price (VAT excl.)

810.00 USD

Price is only valid for the software usage in United States.

RFEM Main Program
RFEM 5.xx

Main Program

Structural engineering software for finite element analysis (FEA) of planar and spatial structural systems consisting of plates, walls, shells, members (beams), solids and contact elements

RFEM Concrete Structures
EC2 for RFEM 5.xx

Module Extension for RFEM

Extension of the modules for reinforced concrete design by the Eurocode 2 design

RFEM Steel and Aluminium Structures

Add-on Module

Stress analysis of steel surfaces and members

RFEM Steel and Aluminium Structures

Add-on Module

Design of steel members according to Eurocode 3

RFEM Concrete Structures
RF-CONCRETE Columns 5.xx

Add-on Module

Reinforced concrete design according to the model column method (method based on nominal curvature)

RFEM Concrete Structures
RF-CONCRETE Deflect 5.xx

Add-on Module

Analytical deformation analysis of plate structures consisting of reinforced concrete

RFEM Other

Add-on Module

Stability analysis according to the eigenvalue method

RFEM Dynamic Analysis
RF-DYNAM Pro - Natural Vibrations  5.xx

Add-on Module

Dynamic analysis of natural frequencies and mode shapes of member, surface, and solid models

RFEM Timber Structures
RF-TIMBER Pro 5.xx

Add-on Module

Timber design according to Eurocode 5, SIA 265 and/or DIN 1052

RFEM Concrete Structures

Add-on Module

Physical and geometrical nonlinear calculation of beam and plate structures consisting of reinforced concrete

RFEM Other
RF-MAT NL 5.xx

Add-on Module

Consideration of nonlinear material laws

RFEM Other
RF-IMP 5.xx

Add-on Module

Generation of equivalent geometric imperfections and pre-deformed initial structures for nonlinear calculations

RFEM Dynamic Analysis
RF-DYNAM Pro - Equivalent Loads 5.xx

Add-on Module

Seismic and static load analysis using the multi-modal response spectrum analysis

RFEM Concrete Structures

Add-on Module

Design of single, bucket and block foundations

RFEM Other

Add-on Module

Soil-structure interaction analysis and determination of elastic foundation coefficients based on soil data

RFEM Concrete Structures
RF-PUNCH Pro 5.xx

Add-on Module

Punching shear design of foundations and slabs with nodal and line supports

RFEM Steel and Aluminium Structures
RF-STEEL Warping Torsion 5.xx

Module Extension for RF-STEEL EC3

Warping torsion analysis according to the second-order theory with 7 degrees of freedom

RFEM Connections

Add-on Module

Design of rigid bolted frame joints according to Eurocode 3 or DIN 18800

RFEM Dynamic Analysis
RF-DYNAM Pro - Forced Vibrations 5.xx

Add-on Module

Dynamic and seismic analysis including time history analysis and multi-modal response spectrum analysis

RFEM Steel and Aluminium Structures
RF-FE-LTB 5.xx

Add-on Module

Lateral-torsional buckling analysis of members according to the second-order analysis (FEM)

RFEM Glass Structures

Add-on Module

Design of single-layer, laminated and insulating glass

RFEM Connections
RF-JOINTS Steel - Column Base 5.xx

Add-on Module

Design of hinged and restrained column base footings according to Eurocode 3