Timber Design | Strength and Stability | Stability Analysis Features
Product Feature
- Stability analyses for flexural buckling, torsional buckling, and flexural-torsional buckling under compression
- Import of the effective lengths from the calculation using the Structure Stability add-on
- Graphical input and check of the defined nodal supports and effective lengths for a stability analysis
- Determination of the equivalent member lengths for tapered members
- Consideration of the lateral-torsional bracing position
- Lateral-torsional buckling analysis of the structural components subjected to moment loading
- Depending on the standard, a choice between user-defined input of Mcr, analytical method from the standard, and use of internal eigenvalue solver
- Consideration of a shear panel and a rotational restraint when using the eigenvalue solver
- Graphical display of a mode shape if the eigenvalue solver was used
- Stability analysis of structural components with the combined compression and bending stress, depending on the design standard
- Comprehensible calculation of all necessary coefficients, such as the factors for considering moment distribution or interaction factors
- Alternative consideration of all effects for the stability analysis when determining internal forces in RFEM/RSTAB (second-order analysis, imperfections, stiffness reduction, possibly in combination with the Torsional Warping (7 DOF) add-on)
Write Comment...
Write Comment...

Timber Member Compression Perpendicular to the Grain acc. to NDS 2018 and CSA O86:19
A standard scenario in timber member construction is the ability to connect smaller members by means of bearing on a larger girder member. Additionally, member end conditions may include a similar situation where the beam is bearing on a support type. In either scenario, the beam must be designed to consider the bearing capacity perpendicular to the grain according to the NDS 2018 (Sect. 3.10.2) and the CSA O86:19 (Clause 6.5.6 and 7.5.9). In the new generation RFEM 6 and Timber Design add-on, the added feature 'design supports' now allows users to comply with the NDS and CSA bearing perpendicular to the grain design checks.
- The load distribution on my members looks different when using the Load Transfer surface vs. the Load Wizards. What is the reason?
- How can I efficiently define line hinges on several surfaces?
- Why cannot I define a rotation when defining layers?
- How do I create an imperfection based on a mode shape in RFEM 6?
- Why does the eHORA map of Austria give different snow loads than your Geo-Zone tool?
- Why does the load wizard "Member Load from Area Load" give unnecessary concentrated loads?
- How can I carry out case-related design for different load situations?
- How can I modify the lamella thickness for a glulam section in RFEM 6?
- How do I define a member as a cantilever and not as supported at both ends for serviceability or deflection design?
- I would like to export nodal support forces of several load cases, load combinations and result combinations into an Excel spreadsheet in RFEM 6. How should I proceed?
Associated Products