RWIND Simulation - Wind Simulation (Wind Tunnel)

Generation of Wind Loads Based on CFD for Any Type of Structure

Great Program RWIND Simulation

"RWIND Simulation - absolutely brilliant!!! CONGRATULATIONS!!!"

Very Successful RWIND Simulation Webinar

"The webinar about RWIND Simulation was very successful!

From now on, it is possible to analyze wind forces on geometries of objects that are not regulated in the standard. The wind force assumption according to the standard was often a more or less good estimate."

A Perfect Combination

"The RFEM add-on module RF-STABILITY is a perfect combination with RWIND Simulation. Using RF-STABILITY, I can perform a buckling analysis to get accurate effective lengths. Using RWIND Simulation, I can get accurate wind loads. For unusually shaped structures, it would be a wild guess if calculating wind loads from the standard code... either not conservative or too conservative. My client is happy with the results and impressed!"

Newsletter

Receive information including news, useful tips, scheduled events, special offers, and vouchers on a regular basis.

RWIND Simulation is a stand-alone program for numerical simulations of wind flow (digital wind tunnel) around buildings or any other objects and generating wind loads, i.e. forces acting on these objects.

This program was developed in cooperation with PC-Progress and CFD Support and can be used as a stand-alone application or as a complement to RFEM / RSTAB programs for static and dynamic analysis.

Generate wind profiles and turbulence intensity diagrams according to the following standards:

  • European Union EN 1991-1-4 (with National Annexes)
  • United States of America ASCE/SEI 7-10
  • United States of America ASCE/SEI 7-16
  • Canada NBC 2015

  1. Features

    • 3D incompressible wind flow analysis with OpenFOAM® software package
    • Direct model import from RFEM or RSTAB including neighboring and terrain models (3DS, IFC, STEP files)
    • Model design via STL or VTP files independent of RFEM or RSTAB
    • Simple model changes using Drag and Drop and graphical adjustment assistance
    • Automatic corrections of the model topology with shrink wrap networks
    • Option to add objects from the environment (buildings, terrain, ...)
    • Wind load determined over the height of the building, depending on standard-specific parameters (velocity, turbulence intensity)
    • K-epsilon and K-omega turbulence models
    • Automatic mesh generating adjusted to the selected depth of detail
    • Parallel calculation with optimal utilization of the capacity of multicore computers
    • Results in just minutes for low-resolution simulations (up to 1 million cells)
    • Results within a few hours for simulations with medium/high resolution (1‑10 million cells)
    • Graphical display of results on the Clipper/Slicer planes (scalar and vector fields)
    • Graphical display of streamlines
    • Streamline animation (optional video creation)
    • Definition of point and line samples
    • Display of aerodynamic pressure coefficients
    • Graphical display of turbulence properties in the wind field
    • Documentation possible in the printout report of RFEM and RSTAB
  2. General Data for Generating RFEM/RSTAB Load Cases

    Input

    RFEM and RSTAB have a special interface for exporting models (i.e. structures defined by members and surfaces) to RWIND Simulation. In this interface, the wind directions to be analyzed are defined by means of related angular positions about the vertical model axis, and the height-dependent wind and turbulence intensity profile is defined on the basis of a wind standard. Based on these specifications, you can create your own load cases for each angle setting by using fluid parameters, turbulence model properties, and iteration parameters that are all saved globally. These load cases can be extended from STL vector graphics by partial editing in the RWIND Simulation environment using terrain or environment models.

    You can also run the program RWIND Simulation manually without the interface in RFEM and RSTAB. In this case, the structures and terrain environment in RWIND Simulation are directly modeled by importing STL and VTP files. The height-dependent wind load and other fluid-mechanical data can be defined directly in RWIND Simulation.

  3. Considering Terrain Models in RWIND Simulation | © www.sta-con.cz

    Calculation

    RWIND Simulation uses a numerical CFD model (Computational Fluid Dynamics) to perform wind flows around objects using a digital wind tunnel. Specific wind loads are generated from the simulation process for RFEM or RSTAB.

    A 3D solid mesh is used for the simulation. RWIND Simulation carries out an automatic meshing where it is possible to set the entire mesh density as well as the local mesh refinement on the model very easily using a few parameters. A numerical solver for incompressible turbulent flows is used to calculate the wind flows and the surface pressures on the model. The results are then extrapolated on the model. RWIND Simulation has been designed to work with different numerical solvers.

    We currently recommend using the OpenFOAM® software package, which has provided very good results in our tests and is also a frequently used tool for CFD simulations. Alternative numerical solvers are under development.

  4. Streamlines in RWIND Simulation

    Output

    In addition to these resulting load cases in RFEM and RSTAB, more results of the aerodynamics analysis in RWIND Simulation are obtained which display the flow problem as a whole:

    • Pressure on structure surface
    • Pressure field about structure geometry
    • Velocity field about structure geometry
    • Velocity vectors about structure geometry
    • Flow lines about structure geometry
    • Forces on member-shaped structures that were originally generated from member elements
    • Convergence diagram
    • Direction and size of the flow resistance of the defined structures

    These results are displayed in the RWIND Simulation environment and evaluated graphically. Since the flow results about the structure geometry are confusing in the overall display, you can see freely movable section planes for the separate display of the "solid results" in a plane. Accordingly, in the 3D branched streamline result, an animated display in the form of moving lines or particles is shown in addition to a structural representation. This option helps to represent the wind flow as a dynamic effect.

    All results can be exported as a picture or, especially for the animated results, as a video.

  5. Display of Load Distribution in RFEM

    Transfer of Wind Loads to RFEM or RSTAB

    When you start the analysis in the interface program, a batch process starts that puts all member, surface, and solid definitions of the RFEM/RSTAB model rotated with all relevant factors in the numerical RWIND Simulation wind tunnel, analyzes the model, and returns the resulting surface pressures as FE node loads or member loads to the respective load cases in RFEM and RSTAB.

    These load cases containing RWIND Simulation loads can be calculated and combined with other loads in load combinations and result combinations.

Disclaimer: This offering is not approved or endorsed by OpenCFD Limited, producer and distributor of the OpenFOAM software via www.openfoam.com, and owner of the OPENFOAM® and OpenCFD® trade marks.

Contact us

Do you have any questions about our products or need advice on selecting the products needed for your projects?
Contact us via our free e-mail, chat, or forum support or find various suggested solutions and useful tips on our FAQ page.

+49 9673 9203 0

info@dlubal.com

Dlubal is Member of WtG

Dlubal Software ist a member of Windtechnologische Gesellschaft e.V.

Price (VAT excl.)

Price
2,690.00 USD

Price is only valid for the software usage in United States.