Interesting customer projects designed with the structural analysis programs by Dlubal Software.
CRANEWAY Stand-Alone Program
Design of Craneway Girders
The stand-alone program CRANEWAY calculates crane runway girders according to:
EN 1993-6:2008-09 (Eurocode 3)
DIN 4132:1981-02 and DIN 18800:1990-11
For the design according to EN 1993‑6, you can optionally select the crane type (bridge or suspension crane).
Features
- Craneway and weld stress analysis
- Craneways and weld fatigue design
- Deformation analysis
- Plate buckling analysis for wheel load introduction
- Stability analysis for lateral torsional buckling according to the second-order analysis of torsional buckling (1D FEA element)
For the design according to Eurocode 3, the following National Annexes are available:
-
DIN EN 1993-6/NA:2010-12 (Germany)
NBN EN 1993-6/ANB:2011-03 (Belgium)
-
SFS EN 1993-6/NA:2010-03 (Finland)
NF EN 1993-6/NA:2011-12 (France)
UNI EN 1993-6/NA:2011-02 (Italy)
LST EN 1993-6/NA:2010-12 (Lithuania)
NEN EN 1993-6/NB:2012-05 (The Netherlands)
NS EN 1993-6/NA:2010-01 (Norway)
SS EN 1993-6/NA:2011-04 (Sweden)
CSN EN 1993-6/NA:2010-03 (Czech Republic)
BS EN 1993-6/NA:2009-11 (United Kingdom)
CYS EN 1993-6/NA:2009-03 (Cyprus)
In addition to the National Annexes (NA) listed above, you can also define a specific NA, applying user-defined limit values and parameters.
Input
Geometry, material, cross-section, action and imperfection data is entered in clearly arranged input windows:
Geometry
- Quick and comfortable data input
- Definition of support conditions based on various support types (hinged, hinged movable, rigid, and user-defined as well as lateral on upper or bottom flange)
- Optional specification of warping restraint
- Variable arrangement of rigid and deformable support stiffeners
- Possibility to insert hinges
CRANEWAY Cross-Sections
- I-shaped rolled cross-sections (I, IPE, IPEa, IPEo, IPEv, HE-B, HE-A, HE-AA, HL, HE-M, HE, HD, HP, IPB-S, IPB-SB, W, UB, UC, and other cross-sections according to AISC, ARBED, British Steel, Gost, TU, JIS, YB, GB, and others) combinable with section stiffener on the upper flange (angles or channels) as well as rail (SA, SF) or splice with user-defined dimensions
- Unsymmetrical I-sections (type IU) also combinable with stiffeners on the upper flange as well as with rail or splice
Actions
It is possible to consider actions of up to three simultaneously operated cranes. You can simply select a standard crane from the library. You can also enter data manually:
- Number of cranes and crane axles (maximum of 20 axles per crane), center distances, position of crane buffers
- Classification in damage classes with editable dynamic factors according to EN 1993-6, and in lifting classes and exposure categories according to DIN 4132
- Vertical and horizontal wheel loads due to self-weight, lifting capacity, mass forces from drive as well as skewing
- Axial loading in driving direction as well as buffer forces with user-defined eccentricities
- Permanent and variable secondary loads with user-defined eccentricities
Imperfections
- The imperfection load applies in compliance with the first natural vibration mode - either identically for all load combinations to be designed or individually for each load combination as mode shapes may vary depending on the load.
- Comfortable tools available for scaling the mode shapes (rise determination of inclination and precamber).
Calculation
During the calculation, crane loads are generated in predefined distances as load cases of crane runway. The load increment for cranes moving across the crane runway can be set individually.
The program analyzes all combinations of the respective limit states (ULS, fatigue, deformation, and support forces) for each crane position. In addition, there are comprehensive setting options for specification of the FE calculation such as length of finite elements or break-off criteria.
The internal forces of a crane runway girder are calculated on an imperfect structural model according to the second-order analysis for torsional buckling.
Results
All results are arranged in result windows sorted by different topics. The design values are illustrated in the corresponding cross-section graphic. Design details cover all intermediate values.
General Stress Analysis
CRANEWAY performs the general stress analysis of a crane girder by calculating the existing stresses and comparing them with the limit normal, shear and equivalent stresses. Welds are also subjected to the general stress analysis with regard to parallel and vertical shear stresses and their superposition.
Fatigue Design
Fatigue design is performed for up to three cranes operating at the same time, based on the nominal stress concept according to EN 1993-1-9. In the case of the fatigue design according to DIN 4132, a stress curve of crane passages is recorded for each stress point and evaluated according to the Rainflow method.
Buckling Analysis
Buckling analysis considers the local introduction of wheel loads according to the EN 1993-6 or DIN 18800-3 standards.
Deformation Analysis
Deformation analysis is performed separately for the vertical and horizontal direction. The available related displacements are compared with the allowable values. You can individually specify the allowable deformation ratios in the calculation parameters.
Lateral-Torsional Buckling Analysis
The lateral-torsional buckling analysis is performed in accordance with the second-order analysis for torsional buckling considering imperfections. The general stress analysis has to be fulfilled with the critical load factor greater than 1.00. As a result, CRANEWAY displays the corresponding critical load factor for all load combinations of the stress analysis.
Support Forces
The program determines all support forces on the basis of the characteristic loads including dynamic factors.
Manual CRANEWAY |
Customer Projects
Price

New
Evaluating and Documenting Steel Joints Analysis Results in RFEM 6
With the RFEM 6 add-on Steel Joints, you can analyze steel connections by using an FE model. This article demonstrates how to evaluate and document the steel joints analysis results.

New
Application of Connections to the Structure | Steel Joints
- The proposed connection can be applied to all selected nodes in the structure
- The location of the connection can be defined using the "Main" tab of the Add-on dialog box
- The design is performed for all connections in the structure and after the calculation, the results on all connections can be displayed
- The table shows the results for the individual connections, each connection is designed and can be saved separately
-
How do I set a release for warping?
- How can I define a warping spring or a warping restraint?
- At which point on a cross-section are the supports and loads assumed for the calculation with warping torsion?
- The limit stress is activated, but my stress ratio is “non-designable” in the Stress-Strain Analysis add-on. What could be the reason?
- How can I deactivate the 7th degree of freedom for certain members or cross-sections only?
- How can I define a warping spring or a warping restraint?