We provide hints and tips to help you get started with the basic program RFEM.
KB 000524 | Calculating Prestressed Hollow Core Slabs
Video
First Steps with RFEM
18 January 2021
002189
Description
Precast prestressed hollow core slabs consist of composite, uniaxially stressed non‑solid slabs with a width of about 1.20 m. These elements are prestressed with pre-tension in a precast concrete plant. The precasting is usually done with slipformers. Due to the lesser self‑weight of the non‑solid slab and the existing prestress, these precast prestressed hollow core slabs show a lesser deflection than loosly reinforced slabs made of solid concrete.
With the add-on modules RF‑TENDON / RF‑TENDON Design, you can design structural components with pretension.
Keywords
Dlubal Knowledge Base Hollow core slab Precast elements Prestress Prestressed concrete Dlubal KB Knowledge Base Technical Contribution
Links
Contact us
Do you have any questions about our products or need advice on selecting the products needed for your projects?
Contact us via our free e-mail, chat, or forum support or find various suggested solutions and useful tips on our FAQ page.
Recommended Events
Eurocode 5 | Timber structures according to EN 1995-1-1
Online Training 17 March 2021 8:30 AM - 12:30 PM CET
Eurocode 3 | Steel structures according to DIN EN 1993-1-1
Online Training 18 March 2021 8:30 AM - 12:30 PM CET
Eurocode 3 | Steel structures according to DIN EN 1993-1-1
Online Training 6 May 2021 8:30 AM - 12:30 PM
Eurocode 2 | Concrete structures according to DIN EN 1992-1-1
Online Training 11 May 2021 8:30 AM - 12:30 PM
Eurocode 5 | Timber structures according to DIN EN 1995-1-1
Online Training 20 May 2021 8:30 AM - 12:30 PM
RFEM | Structural dynamics and earthquake design according to EC 8
Online Training 2 June 2021 8:30 AM - 12:30 PM
Stability Design in Steel Construction with RFEM and RSTAB
Webinar 1 December 2020 2:00 PM - 2:45 PM CET
Videos
KB000610 | Automatically Dimensioning the Foundation Slab Geometry with RF-/FOUNDATION Pro
Length 0:40 min
KB 000674 | Defining Mandrel Diameter for Foundation Reinforcement in RF-/FOUNDATION Pro
Length 0:36 min
KB 000605 | Setting the Concrete Cover in RF-/FOUNDATION Pro According to EN 1992-1-1
Length 0:32 min
KB 000655 | Longitudinal reinforcement to be applied for the shear force design according to EN 1...
Length 0:34 min
Models to Download
Knowledge Base Articles

New
Calculating Prestressed Hollow Core Slabs
Prestressed concrete slabs consist of composite, uniaxially stressed hollow plates with a width of about 1.20 m. These elements are prestressed with pre-tension in a precast concrete plant. The precasting is usually done with slipformers. Due to the lesser self‑weight of the non‑solid slab and the existing prestress, these precast prestressed hollow core slabs show a lesser deflection than loosly reinforced slabs made of solid concrete.
Screenshots
Product Features Articles

Material Model Orthotropic Masonry 2D
The material model Orthotropic Masonry 2D is an elastoplastic model that additionally allows softening of the material, which can be different in the local x- and y-direction of a surface. The material model is suitable for (unreinforced) masonry walls with in-plane loads.
Frequently Asked Questions (FAQ)
- How are the signs for the release results of a line release and line hinges interpreted?
- How can I create a curved or arched section?
- Is it possible to manually specify a longitudinal reinforcement for design in RF‑PUNCH Pro?
- Can I simulate the cracked state of a concrete cross -section for a bending beam with the "Isotropic Nonlinear Elastic 1D" material model?
- Why is the deflection of the reinforced concrete floor sometimes greater when selecting a larger basic reinforcement?
- I have a question about message no.47 in the RFEM program. What is the exact meaning of the word integrate? What is the resulting effect?
-
If I do not specify any basic reinforcement in RF-CONCRETE Surfaces, I get the value X as additionally required reinforcement. If I enter this value X as the existing basic reinforcement, I correctly do not get any additional required reinforcement.
However, if I enter a lower value than the determined required total reinforcement as the basic reinforcement, the additionally required reinforcement is increased in such a way that the originally required reinforcement content is exceeded. Why? - Why does the RF-CONCRETE Surfaces add-on module not increase the amount of reinforcement until the SLS designs have a design ratio of 1.0?
- How can I get the member end forces to design the connections?
- How can I perform the design of the tension resistance of a smooth column in a smooth bucket column base, that is, the design against pulling out the column?
Customer Projects