W tym tutorialu chcielibyśmy zapoznać Państwa z podstawowymi funkcjami programu RFEM. Pierwsza część pokazuje, jak tworzyć obiekty konstrukcyjne i obciążenia, łączyć obciążenia, przeprowadzać analizę statyczno-wytrzymałościową, sprawdzać wyniki i przygotowywać dane do wydruku. Jako normy stosowane są Eurokody z ustawieniami CEN.
Rozszerzenie Analiza naprężeniowo-odkształceniowa przeprowadza ogólną analizę naprężeń poprzez obliczenie istniejących naprężeń i porównanie ich z naprężeniami granicznymi. Program RFEM określa również zakresy naprężeń. Ponadto możliwe jest określenie odkształceń dla powierzchni i brył.
Podczas analizy naprężeń określane są maksymalne naprężenia brył, powierzchni i spoin liniowych (tylko RFEM) oraz prętów. Dla każdego pręta i każdej powierzchni dokumentowane są również decydujące siły wewnętrzne. Ponadto istnieje możliwość automatycznej optymalizacji przekrojów lub grubości wraz z aktualizacją przekrojów lub grubości powierzchni zmodyfikowanych w programie RFEM/RSTAB.
Niniejsza instrukcja obsługi opisuje rozszerzenie Analiza naprężeniowo-odkształceniowa dla programów RFEM 6 i RSTAB 9.
Rozszerzenie Projektowanie konstrukcji drewnianych umożliwia wymiarowanie prętów i powierzchni drewnianych zgodnie z różnymi normami obliczeniowymi. Rozszerzenie pozwala na przeprowadzanie obliczeń stanów granicznych nośności i użytkowalności oraz analizy stateczności. Wprowadzanie danych i ocena wyników są w pełni zintegrowane z interfejsem użytkownika programu RFEM opartego na MES oraz programu do obliczeń konstrukcji szkieletowych RSTAB.
W niniejszej instrukcji opisano rozszerzenie Projektowanie konstrukcji drewnianych dla programów RFEM 6 i RSTAB 9.
Rozszerzenie Projektowanie konstrukcji aluminiowych umożliwia wymiarowanie prętów aluminiowych zgodnie z różnymi normami projektowymi. Rozszerzenie pozwala na przeprowadzanie obliczeń stanów granicznych nośności i użytkowalności oraz analizy stateczności. Wprowadzanie danych i ocena wyników są w pełni zintegrowane z interfejsem użytkownika programu RFEM opartego na MES oraz programu do obliczeń konstrukcji szkieletowych RSTAB.
W niniejszej instrukcji opisano rozszerzenie Projektowanie konstrukcji aluminiowych dla programów RFEM 6 i RSTAB 9.
Analizy dynamiczne w RFEM 6 i RSTAB 9 można przeprowadzać w kilku rozszerzeniach.
Rozszerzenie Analiza modalna jest rozszerzeniem podstawowym, przeprowadzającym analizę drgań własnych dla modeli prętowych, powierzchniowych i bryłowych. Jest to warunek wstępny dla wszystkich innych rozszerzeń dynamicznych.
Rozszerzenie Analiza spektrum odpowiedzi umożliwia przeprowadzenie analizy sejsmicznej przy użyciu multimodalnej analizy spektrum odpowiedzi.
Rozszerzenie Analiza historii czasowej umożliwia dynamiczną analizę statyczną wzbudzeń zewnętrznych, które można zdefiniować w funkcji czasu.
Rozszerzenie Analiza pushover umożliwia określenie maksymalnej nieliniowej odpowiedzi konstrukcji na obciążenia sejsmiczne.
Rozszerzenie Analiza harmoniczna jest nadal w fazie rozwoju.
W niniejszej instrukcji opisano rozszerzenia do analizy dynamicznej dla programów RFEM 6 i RSTAB 9.
W tym tutorialu chcielibyśmy zapoznać Państwa z podstawowymi funkcjami programu RFEM. W pierwszej części zdefiniowano model i przeprowadzono analizę statyczno-wytrzymałościową. Następnie przeprowadzono obliczenia betonu i stali w kolejnych częściach. W tej części poprowadzimy użytkownika przez analizę dynamiczną modelu zgodnie z EN 1998-1 z ustawieniami CEN.
Rozszerzenie Powierzchnie wielowarstwowe umożliwia definiowanie struktury warstw dla dowolnych modeli materiałowych. Innym możliwym typem grubości jest drewniany panel szkieletowy, stanowiący połączenie prętów i powierzchni. W przypadku materiałów ortotropowych poszczególne warstwy mogą być obrócone o kąt β, co pozwala uwzględnić różne sztywności w zależności od kierunku. Rozszerzenie Powierzchnie wielowarstwowe jest w pełni zintegrowane z interfejsem użytkownika programu RFEM opartego na MES.
W niniejszej instrukcji opisano rozszerzenie Powierzchnie wielowarstwowe dla programu RFEM 6.
Rozszerzenie Optymalizacja i koszty/Oszacowanie emisji CO2 składa się z dwóch części: Z jednej strony można określić optymalny rozkład parametrów dla sparametryzowanych modeli w oparciu o zdefiniowane przez użytkownika kryteria optymalizacji. W tym celu wykorzystywana jest technologia sztucznej inteligencji (AI) optymalizacji rojem cząstek (PSO). Z drugiej strony można oszacować koszty i emisje CO2 modelu, określając koszty jednostkowe i emisje użytych materiałów.
W niniejszej instrukcji opisano funkcje rozszerzenia dla programów RFEM 6 i RSTAB 9. Objaśnienia odnoszą się do programu RFEM, ale mają również zastosowanie do programu RSTAB.
Najpierw pokazano, jak modelować krokiew narożną w programie RFEM 6 i przykładać obciążenia, a także przeprowadzać obliczenia konstrukcji drewnianych zgodnie z Eurokodem 5. Na koniec objaśniono tworzenie raportu oraz korzystanie z parametrów i skryptów zdefiniowanych przez użytkownika.
Podczas webinarium przeprowadzane jest badanie stateczności klatki schodowej. Wyjaśnia, kiedy i dlaczego konieczna jest analiza skręcania skrępowanego z 7 stopniami swobody. Ponadto szczególnie ważna jest wiedza, w jaki sposób można tworzyć i łączyć imperfekcje lokalne w programach RFEM 6 i RSTAB 9.
W instrukcji wszystkie kroki są przeprowadzane w programie RFEM 6, ale można je przenieść do programu RSTAB 9 w ten sam sposób.
W webinarium modelowany jest wspornik ze śrubami. Wyjaśnia, jak zdefiniować kontakt między objętościami i jak przeprowadzić analizę naprężeniowo-odkształceniową. Uwzględniono również zastosowanie spoin.