# Simulating Hydrostatic Pressure on Vessel Structures

### Tips & Tricks

4 December 2012

000481

A fluid with a constant density in a homogenous gravitational field exerts a hydrostatic pressure on its surrounding container walls according to Pascal's law:

p(h) = ρ ∙ g ∙ h
where
p(h) = hydrostatic pressure depending on the height of the fluid level in [N/m²]
ρ = density in [kg/m³]
g = acceleration due to gravity in [m/s²]
h = height of fluid level in [m]

The free rectangular load is a surface load function used for the definition of compressive loads on surfaces. The tributary area of this particular load type is defined by a cuboid hovering freely in space. Thus, only those assigned surface areas are loaded that are located within the spatial cuboid boundary. The spatial cuboid boundary is defined in the program by two points which raise a projection plane between the global coordinate axes. Thus, this projection plane is the side view of the cuboid boundary. The length of the cuboid boundary is not defined and is determined by the assigned surfaces directly.

The simulation of a hydrostatic pressure requires that the pressure is exerted on each point of the vessel perpendicularly to the walls and increases linearly with the distance to the fluid level according to the law described above. To achieve an effect perpendicular to the walls, select the load direction z "Local - related to true area". The linear distribution depending on the fluid level is simulated by switching to a linear load distribution in the respective direction and the assignment of the load ordinates at the definition points of the projection plane (above - zero, below - value according to expression).

Tip: To simulate different fluid levels very quickly, change the definition point p1 of the projection plane above and the load ordinates at location p2.

### Write Comment...

• Views 646x
• Updated 2 December 2020

Do you have questions or need advice?
Contact our free e-mail, chat, or forum support or find various suggested solutions and useful tips on our FAQ page.

Webinar 19 January 2021 2:00 PM - 3:00 PM EST

RFEM | Basics | USA

Online Training 20 January 2021 12:00 PM - 4:00 PM EST

RFEM | Basics

Online Training 29 January 2021 8:30 AM - 12:30 PM CET

RFEM for Students | USA

Online Training 3 February 2021 1:00 PM - 4:00 PM EST

The Most Common User Errors With RFEM and RSTAB

Webinar 4 February 2021 2:00 PM - 2:45 PM CET

RFEM | Steel | USA

Online Training 16 February 2021 9:00 AM - 12:00 PM EST

Eurocode 2 | Concrete structures according to DIN EN 1992-1-1

Online Training 19 February 2021 8:30 AM - 12:30 PM CET

RFEM | Structural dynamics and earthquake design according to EC 8

Online Training 24 February 2021 8:30 AM - 12:30 PM CET

Eurocode 5 | Timber structures according to EN 1995-1-1

Online Training 17 March 2021 8:30 AM - 12:30 PM CET

Eurocode 3 | Steel structures according to DIN EN 1993-1-1

Online Training 18 March 2021 8:30 AM - 12:30 PM CET

RFEM | Dynamics | USA

Online Training 23 March 2021 1:00 PM - 4:00 PM EST

RFEM | Basics

Online Training 23 April 2021 8:30 AM - 12:30 PM

Eurocode 3 | Steel structures according to DIN EN 1993-1-1

Online Training 6 May 2021 8:30 AM - 12:30 PM

Eurocode 2 | Concrete structures according to DIN EN 1992-1-1

Online Training 11 May 2021 8:30 AM - 12:30 PM

Eurocode 5 | Timber structures according to DIN EN 1995-1-1

Online Training 20 May 2021 8:30 AM - 12:30 PM

RFEM | Structural dynamics and earthquake design according to EC 8

Online Training 2 June 2021 8:30 AM - 12:30 PM

Length min

Length 0:13 min

Length min

Length 0:39 min

Length 0:45 min

Length 0:41 min

Length min

Length 0:28 min

Length 1:17 min

Length 2:20 min

Length 2:24 min

Length 0:50 min