95x
001973
1.8.2025

Ověření výsledků simulace pomocí metody míry zásahu definované v WTG-Merkblatt M3

Článek představuje metodu validace výsledků CFD založenou na použití definovaném v WTG-Merkblatt M3. Hodnotí, zda výsledky simulace spadají do specifikovaných absolutních nebo relativních odchylek od referenčních hodnot. Metoda je aplikována na příklad s 12 měřicími body, kde dosahuje 90% míry úspěšnosti, čímž splňuje kritéria přijatelnosti pro střední hodnotu.

Introduction

In the context of numerical wind simulations and model validation, the reliability of computed results must be demonstrated through systematic comparison with reference data. Section 5.3.2 of the WTG-Merkblatt introduces a quantitative method for this purpose using the hit rate approach. This method provides a binary evaluation for each data point by checking whether the deviation between simulation result and reference value lies within a defined absolute or relative tolerance. The hit rate q is then calculated as the ratio of successfully validated points to the total number of considered points. This approach allows for an objective and reproducible assessment of simulation quality, especially for spatially distributed quantities such as surface pressures or force coefficients.

Definition of the Hit Rate

Based on WTG Section 5.3, in the field of reliability theory, the probability of failure is often determined using a confidence function that only recognizes the values 0 and 1. Analogously, in VDI 3783-9, a hit rate q is defined for prediction models, based on the number of "correctly" calculated result values Pi in comparison with the sufficiently significant reference values Oi as defined below:

Table 1 (as Table 5.1 in WTG-Merkblatt M3) defines benchmark criteria for validating pressure coefficient results in CFD simulations. It sets maximum allowable deviations (10–20%) and requires a hit rate of over 90% for mean, RMS, and extreme values. These thresholds help ensure that the simulation data closely match the reference values and support consistent quality assessment.

Table 1: Exemplary Evaluation Criteria for Force and Pressure Coefficients

Considered Value Maximum Deviation (W) Hit Rate (q)
Mean Value of the Pressure Coefficient 10% >90%
RMS Value of the Pressure Coefficient 20% >90%
Extreme Value of the Unsteady Pressure Coefficient 20% >90%

Example: Evaluation of 12 Measurement Points on a Surface

Let's consider 12 measured reference values Oi and the corresponding simulation values Pi. We have used the relative deviation tolerance of W=10% for using average values.

Table 1: Hit Rate Evaluation for Mean Value of 12 Measurement Points

Point (i) Reference Value (Oi) Simulated Value (Pi) Relative Deviation Wrel % Hit rate (1 = Yes, 0 = No)
1 0.72 0.75 4.17 1
2 0.68 0.70 2.94 1
3 0.81 0.85 4.94 1
4 0.77 0.73 5.19 1
5 0.66 0.69 4.55 1
6 0.74 0.71 4.05 1
7 0.85 0.80 5.88 1
8 0.70 0.66 5.71 1
9 0.81 0.88 8.64 1
10 0.76 0.69 9.21 1
11 0.82 0.75 8.54 1
12 0.69 0.80 15.94 0

Hit Rate: q=11/12≈91.7%

It meets the minimum requirement (>90%) for validating mean values. Only Point 12 exceeds the tolerance (10%).

Conclusion

The hit rate method offers a simple and transparent way to assess the quality of simulation results by quantifying how many values lie within acceptable deviations from reference data. It is particularly useful for pressure and force coefficient validation in wind simulations or aerodynamic studies. However, the selection of appropriate thresholds and the segmentation of data (e.g., by regions or dominant flow direction) play a crucial role in meaningful assessment.


Autor

Pan Kazemian má na starosti vývoj produktů a marketing společnosti Dlubal, zejména programu RWIND 2.



;