FAQ 003411 EN-US

Helpful Questions & Answers

  • Frequently Asked Questions (FAQs)

How does the "Orthotropic Plastic" material model work in RFEM?

Answer

The material model according to Tsai-Wu unifies the plastic with the orthotropic properties. In this way, it is possible to specifically model the materials with anisotropic properties, such as plastics or timber. If the material is plastified, the stresses remain constant. The redistribution is carried out according to the stiffnesses available in the individual directions. The elastic region corresponds to the "Orthotropic - 3D" material model. For the plastic area, the yielding according to Tsai-Wu applies:

${\text{f}}_{\mathrm{crit}}\left(\mathrm\sigma\right)=\frac1{\mathrm C}\left[\frac{\left({\mathrm\sigma}_{\mathrm x}-{\mathrm\sigma}_{\mathrm x,0}\right)^2}{{\mathrm f}_{\mathrm t,\mathrm x}{\mathrm f}_{\mathrm c,\mathrm x}}+\frac{\left({\mathrm\sigma}_{\mathrm y}-{\mathrm\sigma}_{\mathrm y,0}\right)^2}{{\mathrm f}_{\mathrm t,\mathrm y}{\mathrm f}_{\mathrm c,\mathrm y}}+\frac{\left({\mathrm\sigma}_{\mathrm z}-{\mathrm\sigma}_{\mathrm z,0}\right)^2}{{\mathrm f}_{\mathrm t,\mathrm z}{\mathrm f}_{\mathrm c,\mathrm z}}+\frac{{\mathrm\tau}_{\mathrm{yz}}^2}{{\mathrm f}_{\mathrm v,\mathrm{yz}}^2}+\frac{{\mathrm\tau}_{\mathrm{xz}}^2}{{\mathrm f}_{\mathrm v,\mathrm{xz}}^2}+\frac{{\mathrm\tau}_{\mathrm{xy}}^2}{{\mathrm f}_{\mathrm v,\mathrm{xy}}^2}\right]$

where:

${\mathrm\sigma}_{\mathrm x,0}=\frac{{\mathrm f}_{\mathrm t,\mathrm x}-{\mathrm f}_{\mathrm c,\mathrm x}}2$

${\mathrm\sigma}_{\mathrm y,0}=\frac{{\mathrm f}_{\mathrm t,\mathrm y}-{\mathrm f}_{\mathrm c,\mathrm y}}2$

${\mathrm\sigma}_{\mathrm z,0}=\frac{{\mathrm f}_{\mathrm t,\mathrm z}-{\mathrm f}_{\mathrm c,\mathrm z}}2$

$\mathrm C=1+\left[\frac1{{\mathrm f}_{\mathrm t,\mathrm x}}+\frac1{{\mathrm f}_{\mathrm c,\mathrm x}}\right]^2\frac{{\mathrm E}_{\mathrm x}{\mathrm E}_{\mathrm p,\mathrm x}}{{\mathrm E}_{\mathrm x}-{\mathrm E}_{\mathrm p,\mathrm x}}\mathrm\alpha+\frac{{\mathrm\sigma}_{\mathrm x,0}^2}{{\mathrm f}_{\mathrm t,\mathrm x}{\mathrm f}_{\mathrm c,\mathrm x}}+\frac{{\mathrm\sigma}_{\mathrm y,0}^2}{{\mathrm f}_{\mathrm t,\mathrm y}{\mathrm f}_{\mathrm c,\mathrm y}}+\frac{{\mathrm\sigma}_{\mathrm z,0}^2}{{\mathrm f}_{\mathrm t,\mathrm z}{\mathrm f}_{\mathrm c,\mathrm y}}$

The stress criterion can be imagined as an elliptical surface within a six-dimensional space of stresses. If one of the three stress components is applied as a constant value, the surface can be projected onto a three-dimensional stress space.

If the value for fy(σ) is smaller than 1, the stresses rest within the elastic area. The plastic area is reached as soon as fy(σ) = 1. Values higher than 1 are not allowed. The model behavior is ideal-plastic, which means there is no stiffening.

Keywords

Tsai-Wu Orthotropic plastic

Write Comment...

Write Comment...

Contact us

Contact Dlubal

Did you find your question?
If not, contact us via our free e-mail, chat, or forum support, or send us your question via the online form.

(267) 702-2815

info-us@dlubal.com

Online Training | English

Eurocode 5 | Timber structures according to DIN EN 1995-1-1

Online Training 09/23/2021 8:30 AM - 12:30 PM CEST

Event Invitation

2022 NASCC: The Steel Conference

Conference 03/23/2022 - 03/25/2022

Event Invitation

International Mass Timber Conference

Conference 04/12/2022 - 04/14/2022

Event Invitation

Structures Congress 2022

Conference 04/21/2022 - 04/22/2022

Effective BIM Workflows Between RSTAB & RFEM and IDEA StatiCa

Effective BIM Workflows Between RSTAB & RFEM and IDEA StatiCa

Webinar 08/05/2021 11:00 AM - 12:00 PM CEST

Glass Design with Dlubal Software

Glass Design with Dlubal Software

Webinar 06/08/2021 2:00 PM - 2:45 PM CEST

Blast Time History Analysis in RFEM

Blast Time History Analysis in RFEM

Webinar 05/13/2021 2:00 PM - 3:00 PM EDT

Timber structures | Part 2: Design

Timber Beam and Surface Structures | Part 2: Design

Webinar 05/11/2021 2:00 PM - 3:00 PM CEST

Plate and Shell Buckling Utilizing Dlubal Software

Plate and Shell Buckling Utilizing Dlubal Software

Webinar 03/30/2021 2:00 PM - 2:45 PM CEST

CSA S16:19 Steel Design in RFEM

CSA S16:19 Steel Design in RFEM

Webinar 03/10/2021 2:00 PM - 3:00 PM EDT

The Most Common User Errors With RFEM and RSTAB

The Most Common User Errors With RFEM and RSTAB

Webinar 02/04/2021 2:00 PM - 3:00 PM BST

ADM 2020 Member Design in RFEM

ADM 2020 Member Design in RFEM

Webinar 01/19/2021 2:00 PM - 3:00 PM EDT

Dlubal Info Day

Dlubal Info Day Online | December 15, 2020

Webinar 12/15/2020 9:00 AM - 4:00 PM BST

FEA Troubleshooting and Optimization in RFEM

FEA Troubleshooting and Optimization in RFEM

Webinar 11/11/2020 2:00 PM - 3:00 PM EDT

Soil-Structure Interaction in RFEM

Soil-Structure Interaction in RFEM

Webinar 10/27/2020 2:00 PM - 2:45 PM BST

NBC 2015 Modal Response Spectrum Analysis in RFEM

NBC 2015 Modal Response Spectrum Analysis in RFEM

Webinar 09/30/2020 2:00 PM - 3:00 PM EDT

Documenting Results in the RFEM Printout Report

Webinar 08/25/2020 2:00 PM - 2:45 PM CEST

ACI 318-19 Concrete Design in RFEM

ACI 318-19 Concrete Design in RFEM

Webinar 08/20/2020 2:00 PM - 3:00 PM EDT

RFEM
RFEM

Main Program

Structural engineering software for finite element analysis (FEA) of planar and spatial structural systems consisting of plates, walls, shells, members (beams), solids and contact elements

Price of First License
3,540.00 USD
RSTAB
RSTAB

Main Program

The structural engineering software for design of frame, beam and truss structures, performing linear and nonlinear calculations of internal forces, deformations, and support reactions

Price of First License
2,550.00 USD
RFEM
RF-MAT NL

Add-on Module

Consideration of nonlinear material laws

Price of First License
1,300.00 USD