# FAQ 003411 EN-US

### How does the "Orthotropic Plastic" material model work in RFEM?

The material model according to Tsai-Wu unifies the plastic with the orthotropic properties. In this way, it is possible to specifically model the materials with anisotropic properties, such as plastics or timber. If the material is plastified, the stresses remain constant. The redistribution is carried out according to the stiffnesses available in the individual directions. The elastic region corresponds to the "Orthotropic - 3D" material model. For the plastic area, the yielding according to Tsai-Wu applies:

${\text{f}}_{\mathrm{crit}}\left(\mathrm\sigma\right)=\frac1{\mathrm C}\left[\frac{\left({\mathrm\sigma}_{\mathrm x}-{\mathrm\sigma}_{\mathrm x,0}\right)^2}{{\mathrm f}_{\mathrm t,\mathrm x}{\mathrm f}_{\mathrm c,\mathrm x}}+\frac{\left({\mathrm\sigma}_{\mathrm y}-{\mathrm\sigma}_{\mathrm y,0}\right)^2}{{\mathrm f}_{\mathrm t,\mathrm y}{\mathrm f}_{\mathrm c,\mathrm y}}+\frac{\left({\mathrm\sigma}_{\mathrm z}-{\mathrm\sigma}_{\mathrm z,0}\right)^2}{{\mathrm f}_{\mathrm t,\mathrm z}{\mathrm f}_{\mathrm c,\mathrm z}}+\frac{{\mathrm\tau}_{\mathrm{yz}}^2}{{\mathrm f}_{\mathrm v,\mathrm{yz}}^2}+\frac{{\mathrm\tau}_{\mathrm{xz}}^2}{{\mathrm f}_{\mathrm v,\mathrm{xz}}^2}+\frac{{\mathrm\tau}_{\mathrm{xy}}^2}{{\mathrm f}_{\mathrm v,\mathrm{xy}}^2}\right]$

where:

${\mathrm\sigma}_{\mathrm x,0}=\frac{{\mathrm f}_{\mathrm t,\mathrm x}-{\mathrm f}_{\mathrm c,\mathrm x}}2$

${\mathrm\sigma}_{\mathrm y,0}=\frac{{\mathrm f}_{\mathrm t,\mathrm y}-{\mathrm f}_{\mathrm c,\mathrm y}}2$

${\mathrm\sigma}_{\mathrm z,0}=\frac{{\mathrm f}_{\mathrm t,\mathrm z}-{\mathrm f}_{\mathrm c,\mathrm z}}2$

$\mathrm C=1+\left[\frac1{{\mathrm f}_{\mathrm t,\mathrm x}}+\frac1{{\mathrm f}_{\mathrm c,\mathrm x}}\right]^2\frac{{\mathrm E}_{\mathrm x}{\mathrm E}_{\mathrm p,\mathrm x}}{{\mathrm E}_{\mathrm x}-{\mathrm E}_{\mathrm p,\mathrm x}}\mathrm\alpha+\frac{{\mathrm\sigma}_{\mathrm x,0}^2}{{\mathrm f}_{\mathrm t,\mathrm x}{\mathrm f}_{\mathrm c,\mathrm x}}+\frac{{\mathrm\sigma}_{\mathrm y,0}^2}{{\mathrm f}_{\mathrm t,\mathrm y}{\mathrm f}_{\mathrm c,\mathrm y}}+\frac{{\mathrm\sigma}_{\mathrm z,0}^2}{{\mathrm f}_{\mathrm t,\mathrm z}{\mathrm f}_{\mathrm c,\mathrm y}}$

The stress criterion can be imagined as an elliptical surface within a six-dimensional space of stresses. If one of the three stress components is applied as a constant value, the surface can be projected onto a three-dimensional stress space.

If the value for fy(σ) is smaller than 1, the stresses rest within the elastic area. The plastic area is reached as soon as fy(σ) = 1. Values higher than 1 are not allowed. The model behavior is ideal-plastic, which means there is no stiffening.

#### Keywords

Write Comment...

Write Comment...

• Views 1140x
• Updated 10/27/2021

Submit Individual Question

RFEM 6 | Students | Introduction to Timber Design

Online Training 05/25/2022 4:00 PM - 5:00 PM CEST

Eurocode 5 | Timber Structures According to DIN EN 1995-1-1

Online Training 06/15/2022 8:30 AM - 12:30 PM CEST

Webinar 02/24/2022 2:00 PM - 3:00 PM EST

Considering Construction Stages in RFEM 6

Webinar 01/13/2022 2:00 PM - 3:00 PM CET

Model and Design Timber Structures in RFEM 6 and RSTAB 9

Webinar 11/11/2021 2:00 PM - 3:00 PM CET

Glass Design with Dlubal Software

Webinar 06/08/2021 2:00 PM - 2:45 PM CEST

Blast Time History Analysis in RFEM

Webinar 05/13/2021 2:00 PM - 3:00 PM EST

Timber Beam and Surface Structures | Part 2: Design

Webinar 05/11/2021 2:00 PM - 3:00 PM CEST

Plate and Shell Buckling Utilizing Dlubal Software

Webinar 03/30/2021 2:00 PM - 2:45 PM CEST

Webinar 03/10/2021 2:00 PM - 3:00 PM EST

The Most Common User Errors With RFEM and RSTAB

Webinar 02/04/2021 2:00 PM - 3:00 PM CET

Webinar 01/19/2021 2:00 PM - 3:00 PM EST

Dlubal Info Day Online | December 15, 2020

Webinar 12/15/2020 9:00 AM - 4:00 PM CET

FEA Troubleshooting and Optimization in RFEM

Webinar 11/11/2020 2:00 PM - 3:00 PM EST

Soil-Structure Interaction in RFEM

Webinar 10/27/2020 2:00 PM - 2:45 PM CET

NBC 2015 Modal Response Spectrum Analysis in RFEM

Webinar 09/30/2020 2:00 PM - 3:00 PM EST

Documenting Results in the RFEM Printout Report

Webinar 08/25/2020 2:00 PM - 2:45 PM CEST

Webinar 08/20/2020 2:00 PM - 3:00 PM EST

Length 1:27 min

Length 1:05:17 min

Length 52:30 min

Length 1:06 min

Length 1:10 min

Length 1:00 min

Length 1:00 min

Length 1:13:45 min

Length 3:02:59 min

Length 2:50:30 min

Length 1:02 min

Length 52:33 min