FAQ 003411 DE

Fragen & Antworten, die Ihnen weiterhelfen

  • Häufig gestellte Fragen (FAQs)

Wie funktioniert das Materialmodell orthotrop plastisch in RFEM?

Antwort

Das Materialmodell nach Tsai-Wu vereint plastische und orthotrope Eigenschaften. Damit sind spezielle Modellierungen von Werkstoffen mit anisotroper Charakteristik wie Kunststoff oder Holz möglich. Beim Plastizieren des Materials bleiben die Spannungen konstant. Es erfolgt eine Umlagerung in Abhängigkeit von den Steifigkeiten, die in die einzelnen Richtungen vorliegen. Der elastische Bereich entspricht dem Materialmodell "Orthotrop - 3D". Für den plastischen Bereich gilt folgende Fließbedingung nach Tsai-Wu:

${\text{f}}_{\mathrm{crit}}\left(\mathrm\sigma\right)=\frac1{\mathrm C}\left[\frac{\left({\mathrm\sigma}_{\mathrm x}-{\mathrm\sigma}_{\mathrm x,0}\right)^2}{{\mathrm f}_{\mathrm t,\mathrm x}{\mathrm f}_{\mathrm c,\mathrm x}}+\frac{\left({\mathrm\sigma}_{\mathrm y}-{\mathrm\sigma}_{\mathrm y,0}\right)^2}{{\mathrm f}_{\mathrm t,\mathrm y}{\mathrm f}_{\mathrm c,\mathrm y}}+\frac{\left({\mathrm\sigma}_{\mathrm z}-{\mathrm\sigma}_{\mathrm z,0}\right)^2}{{\mathrm f}_{\mathrm t,\mathrm z}{\mathrm f}_{\mathrm c,\mathrm z}}+\frac{{\mathrm\tau}_{\mathrm{yz}}^2}{{\mathrm f}_{\mathrm v,\mathrm{yz}}^2}+\frac{{\mathrm\tau}_{\mathrm{xz}}^2}{{\mathrm f}_{\mathrm v,\mathrm{xz}}^2}+\frac{{\mathrm\tau}_{\mathrm{xy}}^2}{{\mathrm f}_{\mathrm v,\mathrm{xy}}^2}\right]$

mit:

${\mathrm\sigma}_{\mathrm x,0}=\frac{{\mathrm f}_{\mathrm t,\mathrm x}-{\mathrm f}_{\mathrm c,\mathrm x}}2$

${\mathrm\sigma}_{\mathrm y,0}=\frac{{\mathrm f}_{\mathrm t,\mathrm y}-{\mathrm f}_{\mathrm c,\mathrm y}}2$

${\mathrm\sigma}_{\mathrm z,0}=\frac{{\mathrm f}_{\mathrm t,\mathrm z}-{\mathrm f}_{\mathrm c,\mathrm z}}2$

$\mathrm C=1+\left[\frac1{{\mathrm f}_{\mathrm t,\mathrm x}}+\frac1{{\mathrm f}_{\mathrm c,\mathrm x}}\right]^2\frac{{\mathrm E}_{\mathrm x}{\mathrm E}_{\mathrm p,\mathrm x}}{{\mathrm E}_{\mathrm x}-{\mathrm E}_{\mathrm p,\mathrm x}}\mathrm\alpha+\frac{{\mathrm\sigma}_{\mathrm x,0}^2}{{\mathrm f}_{\mathrm t,\mathrm x}{\mathrm f}_{\mathrm c,\mathrm x}}+\frac{{\mathrm\sigma}_{\mathrm y,0}^2}{{\mathrm f}_{\mathrm t,\mathrm y}{\mathrm f}_{\mathrm c,\mathrm y}}+\frac{{\mathrm\sigma}_{\mathrm z,0}^2}{{\mathrm f}_{\mathrm t,\mathrm z}{\mathrm f}_{\mathrm c,\mathrm y}}$

Die Fließbedingung kann man sich als ellipsenförmige Fläche im sechsdimensionalen Spannungsraum vorstellen. Wird eine der drei Spannungskomponenten als konstanter Wert angesetzt, kann die Fläche auf einen dreidimensionalen Spannungsraum projiziert werden.

Ist der Wert für fy(σ) kleiner als 1, so liegen die Spannungen im elastischen Bereich. Der plastische Bereich ist erreicht, sobald fy(σ) = 1. Werte größer als 1 sind unzulässig. Das Modell verhält sich ideal-plastisch, d. h. es findet keine Versteifung statt.

Schlüsselwörter

Tsai Wu Orthotrop plastisch

Schreiben Sie einen Kommentar...

Schreiben Sie einen Kommentar...

  • Aufrufe 918x
  • Aktualisiert 27. Oktober 2021

Kontakt

Kontakt zu Dlubal

Haben Sie Ihre Frage und Antwort gefunden? Wenn nicht, kontaktieren Sie uns über unseren kostenlosen E-Mail-, Chat- bzw. Forum-Support oder reichen Sie Ihre Frage mittels des Online-Formulars ein.

+49 9673 9203 0

info@dlubal.com

RFEM 5
RFEM

Basisprogramm

Das FEM-Programm RFEM ermöglicht die schnelle und einfache Modellierung und Berechnung von Tragkonstruktionen mit Stab-, Platten-, Scheiben-, Faltwerk-, Schalen- und Volumen-Elementen aus verschiedenen Materialien.

Erstlizenzpreis
3.540,00 USD
RSTAB 8
RSTAB

Basisprogramm

Das 3D-Statik-Programm RSTAB eignet sich für die Berechnung von Stabwerken aus Stahl, Beton, Holz, Aluminium oder anderen Materialien. Mit RSTAB definieren Sie einfach und schnell das Tragwerksmodell und berechnen dann die Schnittgrößen, Verformungen und Lagerreaktionen.

Erstlizenzpreis
2.550,00 USD
RFEM 5
RF-MAT NL

Zusatzmodul

Berücksichtigung von nichtlinearen Materialgesetzen

Erstlizenzpreis
1.300,00 USD