This article was translated by Google Translator

View original text

How does the "Orthotropic Plastic" material model work in RFEM?


The material model according to Tsai-Wu unifies the plastic with the orthotropic properties. In this way, it is possible to specifically model the materials with anisotropic properties, such as plastics or timber. If the material is plastified, the stresses remain constant. The redistribution is carried out according to the stiffnesses available in the individual directions. The elastic range corresponds to the "Orthotropic - 3D" material model. For the plastic area, the yielding according to Tsai-Wu applies:

${\text{f}}_{\mathrm{crit}}\left(\mathrm\sigma\right)=\frac1{\mathrm C}\left[\frac{\left({\mathrm\sigma}_{\mathrm x}-{\mathrm\sigma}_{\mathrm x,0}\right)^2}{{\mathrm f}_{\mathrm t,\mathrm x}{\mathrm f}_{\mathrm c,\mathrm x}}+\frac{\left({\mathrm\sigma}_{\mathrm y}-{\mathrm\sigma}_{\mathrm y,0}\right)^2}{{\mathrm f}_{\mathrm t,\mathrm y}{\mathrm f}_{\mathrm c,\mathrm y}}+\frac{\left({\mathrm\sigma}_{\mathrm z}-{\mathrm\sigma}_{\mathrm z,0}\right)^2}{{\mathrm f}_{\mathrm t,\mathrm z}{\mathrm f}_{\mathrm c,\mathrm z}}+\frac{{\mathrm\tau}_{\mathrm{yz}}^2}{{\mathrm f}_{\mathrm v,\mathrm{yz}}^2}+\frac{{\mathrm\tau}_{\mathrm{xz}}^2}{{\mathrm f}_{\mathrm v,\mathrm{xz}}^2}+\frac{{\mathrm\tau}_{\mathrm{xy}}^2}{{\mathrm f}_{\mathrm v,\mathrm{xy}}^2}\right]$


${\mathrm\sigma}_{\mathrm x,0}=\frac{{\mathrm f}_{\mathrm t,\mathrm x}-{\mathrm f}_{\mathrm c,\mathrm x}}2$

${\mathrm\sigma}_{\mathrm y,0}=\frac{{\mathrm f}_{\mathrm t,\mathrm y}-{\mathrm f}_{\mathrm c,\mathrm y}}2$

${\mathrm\sigma}_{\mathrm z,0}=\frac{{\mathrm f}_{\mathrm t,\mathrm z}-{\mathrm f}_{\mathrm c,\mathrm z}}2$

$\mathrm C=1+\left[\frac1{{\mathrm f}_{\mathrm t,\mathrm x}}+\frac1{{\mathrm f}_{\mathrm c,\mathrm x}}\right]^2\frac{{\mathrm E}_{\mathrm x}{\mathrm E}_{\mathrm p,\mathrm x}}{{\mathrm E}_{\mathrm x}-{\mathrm E}_{\mathrm p,\mathrm x}}\mathrm\alpha+\frac{{\mathrm\sigma}_{\mathrm x,0}^2}{{\mathrm f}_{\mathrm t,\mathrm x}{\mathrm f}_{\mathrm c,\mathrm x}}+\frac{{\mathrm\sigma}_{\mathrm y,0}^2}{{\mathrm f}_{\mathrm t,\mathrm y}{\mathrm f}_{\mathrm c,\mathrm y}}+\frac{{\mathrm\sigma}_{\mathrm z,0}^2}{{\mathrm f}_{\mathrm t,\mathrm z}{\mathrm f}_{\mathrm c,\mathrm y}}$

The stress criterion can be imagined as an elliptical surface within a six-dimensional space of stresses. If one of the three stress components is applied as a constant value, the surface can be projected onto a three-dimensional stress space.

If the value for fy (σ) is less than 1, the stresses are in the elastic range. The plastic area is reached as soon as fy (σ) & nbsp; = & nbsp; 1. Values higher than 1 are not allowed. The model behavior is ideal-plastic, which means there is no stiffening.


Tsai Wu Orthotropic plastic

Contact us

Did you find your question?
If not, contact us via our free e-mail, chat, or forum support, or send us your question via the online form.

+49 9673 9203 0

RFEM Main Program
RFEM 5.xx

Main Program

Structural engineering software for finite element analysis (FEA) of planar and spatial structural systems consisting of plates, walls, shells, members (beams), solids and contact elements

Price of First License
3,540.00 USD
RSTAB Main Program
RSTAB 8.xx

Main Program

The structural engineering software for design of frame, beam and truss structures, performing linear and nonlinear calculations of internal forces, deformations, and support reactions

Price of First License
2,550.00 USD
RFEM Other
RF-MAT NL 5.xx

Add-on Module

Consideration of nonlinear material laws

Price of First License
1,300.00 USD