Knowledge Base

Search





Why Dlubal Software?

Solutions

  • More than 45,000 users in 95 countries
  • One software package for all application areas
  • Free support provided by experienced engineers
  • Short learning time and intuitive handling
  • Excellent price/performance ratio
  • Flexible modular concept, extensible according to your needs
  • Scalable license system with single and network licenses
  • Proven software used in many well-known projects

Newsletter

Receive information including news, useful tips, scheduled events, special offers, and vouchers on a regular basis.

  1. Figure 01 - Structural System and Loading

    Comparing Critical Load Factors for Lateral-Torsional Buckling According to Different Methods and Modules

    The branch value for lateral-torsional buckling or the critical buckling moment of a single-span beam will be compared according to different stability analysis methods.

  2. Figure 01 - Flanged Guide

    Horizontal Craneway Loads from Skewing of Bridge Cranes

    For crane runways with large spans, the horizontal load from skewing is often relevant for the design. This article describes the origin of these forces and the correct input in CRANEWAY. The practical implementation and the theoretical background are discussed.

  3. Figure 01 - Structure

    Entering Lateral Supports and Their Effects in RF-/STEEL EC3

    When designing steel columns or steel beams, it is usually necessary to carry out cross-section and stability analyses. In most cases, cross-section design can be carried out without giving further details; the stability design, however, needs additional user-defined specifications. To a certain extent, the member is cut out from the structure and therefore, the support conditions have to be specified. This is particularly important to determine the ideal critical moment for lateral torsional buckling Mcr. In addition, the correct effective lengths Lcr have to be defined. They are necessary for the internal calculation of the slenderness ratios.
  4. Figure 01 - Structure

    Stability Analysis of Steel Column According to EN 1993-1-1

    This article is about the stability analysis of a steel column with axial compression according to EN 1993-1-1 Clause 6.3.1. Additionally, a variation study is carried out aiming at steel optimization.
  5. Figure 01 - Structure, Loading, Internal Forces

    Cross-Section Design of Two-Span Beam

    The cross-section class of a two-span beam will be designed in the following. In addition, the necessary cross-section designs will be performed. The global stability failure will be excluded due to sufficient stabilizing measures.
  6. Figure 01 - Hall Frame as Basis for Surface Model

    Modeling Joints as Surface Model

    With RF-/FRAME-JOINT Pro, it is possible to design frame joints according to DIN 18800 or Eurocode 3. When considering non-standardized joints or taking a closer look at the joint and its behavior, it is recommended to use a modeling as surface model. The following article will show how such a model is created in principle.
  7. Figure 01 - Cross-Section

    Stiffened Buckling Panels According to EN 1993-1-5, Section 4.5

    In SHAPE-THIN, it is possible to perform the calculation of stiffened buckling panels according to Section 4.5 of EN 1993-1-5. For stiffened buckling panels, the effective surfaces due to local buckling of the single panels in the plate and in the stiffeners as well as the effective surfaces from the entire panel buckling of the stiffened entire panel have to be considered.
  8. Structure for the First Design Step and the Selected Connection

    Influence of Slip of Standardized Joints in Steel Structures

    This article deals with the stiffness of standardized joints according to the DSTV (German Steel Construction Association)/DASt (German Committee for Structural Steelwork) standards, often used in steel construction, and its effects on structural analysis and design results according to DIN EN 1993-1-1.
  9. Figure 01 - Beam to Beam Connection with "Long" Fin Plate

    Fin Plate Connections: Theory and Application

    Fin plate connections are a popular form of pinned steel connections and are commonly used for secondary beams in steel structures. They can be easily used in beam structures arranged on the top edge, e.g. working platforms. Manufacturing expenditures in the workshop as well as the assembly costs on-site are normally manageable. The design seems to be completed easily and quickly, but has to be put into perspective to a certain extent in the following. Moreover, this connection type is basically possible as pinned beam to beam or pinned beam to column connection, whereas the first case is the more common one in design practice.
  10. Figure 01 - Structure with Loading

    Consideration of Holes in Tension Design

    For the tension design according to Clause 6.2.3 EN 1993-1-1, the following formulas are given to determine the tension resistance.

    $\begin{array}{l}\mathrm{Equation}\;6.6:\;{\mathrm N}_{\mathrm{pl},\mathrm{Rd}}\;=\;\frac{\mathrm A\;\cdot\;{\mathrm f}_\mathrm y}{{\mathrm\gamma}_{\mathrm M0}}\\\mathrm{Equation}\;6.7:\;{\mathrm N}_{\mathrm u,\mathrm{Rd}}\;=\;\frac{0.9\;\cdot\;{\mathrm A}_\mathrm{net}\;\cdot\;{\mathrm f}_\mathrm u}{{\mathrm\gamma}_{\mathrm M2}}\end{array}$

1 - 10 of 80

Contact us

Contact Dlubal Software

Do you have questions or need advice?
Contact our free e-mail, chat, or forum support or find various suggested solutions and useful tips on our FAQ page.

(267) 702-2815

info-us@dlubal.com

Customer Support 24/7

Knowledge Base

In addition to our technical support (e.g. via chat), you’ll find resources on our website that may help you with your design using Dlubal Software.

First Steps

First steps

We provide hints and tips to help you get started with the main programs RFEM and RSTAB.

Powerful and Capable Software

“I think the software is so powerful and capable that people will really value its power when they get properly introduced to it.”