Knowledge Base

Search

Show Filter Hide Filter





Why Dlubal Software?

Solutions

  • More than 45,000 users in 95 countries
  • One software package for all application areas
  • Free support provided by experienced engineers
  • Short learning time and intuitive handling
  • Excellent price/performance ratio
  • Flexible modular concept, extensible according to your needs
  • Scalable license system with single and network licenses
  • Proven software used in many well-known projects

Wind Simulation & Wind Load Generation

With the stand-alone program RWIND Simulation, wind flows around simple or complex structures can be simulated by means of a digital wind tunnel.

The generated wind loads acting on these objects can be imported to RFEM or RSTAB.

Newsletter

Receive information including news, useful tips, scheduled events, special offers, and vouchers on a regular basis.

  1. Subsequent modeling of a downstand beam under an existing ceiling

    When subsequently modeling a beam under an existing floor, the first question arises is which forces are to be transferred between the downstand beam and the floor and whether a bond effect is the goal. In this case, the floor should rest on the downstand beam without any bond.

  2. Maximum distortion at the top

    Nonlinear calculation of a floor slab made of steel fiber reinforced concrete in the ultimate limit state with RFEM

    Steel fiber reinforced concrete is nowadays mainly used for industrial floors or hall floors, for foundation plates with low loads, basement walls and basement floors. Since the publication of the first guideline by the German Committee for Reinforced Concrete (DAfStb) about steel fiber reinforced concrete in 2010, the structural engineer can use standards for the design of the composite material steel fiber reinforced concrete, which makes the use of fiber reinforced concrete increasingly popular in construction. This article describes the nonlinear calculation of a foundation plate made of steel fiber reinforced concrete in the ultimate limit state in the FEM program RFEM.

  3. Input of factor for reduction fct, eff, As, min

    Assumptions for the Effective Tensile Strength Connected with Determining the Minimum Reinforcement According to DIN EN 1992-1-1 7.3.2

    When determining the minimum reinforcement for the serviceability limit state according to 7.3.2, the applied effective tensile strength fct,eff has a significant influence on the determined amount of reinforcement. The following article gives an overview about determining the effective tensile strength fct,eff and the input options in RF-CONCRETE.

  4. Punching Shear Design in RF-PUNCH Pro Taking Into Account Enlarged Column Head

    In RF-PUNCH Pro, enlarged column heads can be arranged at point-supported punching shear points, thus increasing the shear force resistance of a reinforced concrete floor. In the following article, we will show the punching shear design with the optional application of an enlarged column head.

  5. Determining the Material Properties of Steel Fiber Reinforced Concrete and Using in RFEM

    Steel fiber reinforced concrete is nowadays mainly used for industrial floors or hall floors, for foundation plates with low loads, basement walls and basement floors. Since the publication of the first guideline by the German Committee for Reinforced Concrete (DAfStb) about steel fiber reinforced concrete in 2010, the structural engineer can use standards for the design of the composite material steel fiber reinforced concrete, which makes the use of fiber reinforced concrete increasingly popular in construction. This article explains the individual material parameters of the steel fiber reinforced concrete and how to deal with these material parameters in the FEM program RFEM.

  6. Required Reinforcement for the Rib and Axial Force Distribution of the Wall

    Modeling and Determining Internal Forces for a T-Beam with Masonry Wall Above

    When modeling a reinforced concrete rib with a masonry wall above, there is the risk that the rib is underdesigned if the structural behavior of the masonry is not correctly considered and the connection between masonry wall and downstand beam is not modeled sufficiently accurate. This article deals with this issue and shows possible modeling options of such a structure. In this example, the reinforcement is determined only from the internal forces and without any secondary minimum reinforcement.

  7. Load Distribution on the Surface for the Governing CO

    Surface Load Inside the Critical Perimeter in RF-PUNCH Pro

    RF-PUNCH Pro performs the punching shear design on concentrated load application locations (column connection, nodal support and nodal load) as well as on wall ends and wall corners.

  8. Modeling Overlapping Surfaces: Risks and Approaches

    When modeling with finite elements, you sooner or later come up with the question of how two surfaces (2D elements) lying on top of each other can be modeled. Hence, both surfaces are quite often modeled in the same plane. The possible consequences of this approach and whether there are better solutions are described below.

  9. RF-CONCRETE Members - Provided Shear Reinforcement

    Reinforced Concrete Column Design per ACI 318-14 in RFEM

    Using RF-CONCRETE Members, concrete column design is possible according to ACI 318-14. Accurately designing concrete column shear and longitudinal reinforcement is important for safety considerations. The following article will confirm the reinforcement design in RF-CONCRETE Members using step-by-step analytical equations per the ACI 318-14 standard including required longitudinal steel reinforcement, gross cross-sectional area, and tie size/spacing.

  10. Evaluating the First Mode Shape

    Determining Seismic Loads per Storey by Means of Nodal Constraints

    When introducing and transferring horizontal loads such as wind or seismic loads, there are increasing difficulties in 3D models. To avoid such issues, some standards (for example ASCE 7, NBC) require the simplification of the model by using diaphragms that distribute the horizontal loads to structural components transferring loads, but cannot transfer bending themselves (called "Diaphragm").

1 - 10 of 144

Contact us

Contact to Dlubal

Do you have questions or need advice?
Contact our free e-mail, chat, or forum support or find various suggested solutions and useful tips on our FAQ page.

+49 9673 9203 0

info@dlubal.com

Customer Support 24/7

Knowledge Base

In addition to our technical support (e.g. via chat), you’ll find resources on our website that may help you with your design using Dlubal Software.

First Steps

First steps

We provide hints and tips to help you get started with the main programs RFEM and RSTAB.

Powerful and Capable Software

"I think the software is so powerful and capable that people will really value its power when they get properly introduced to it."