Knowledge Base

Search





Why Dlubal Software?

Solutions

  • More than 45,000 users in 95 countries
  • One software package for all application areas
  • Short learning time and intuitive handling
  • Service provided by experienced engineers
  • Excellent price/performance ratio
  • Flexible modular concept, extensible according to your needs
  • Scalable license system with single and network licenses
  • Proven software used in many well-known projects

Newsletter

Receive information including news, useful tips, scheduled events, special offers, and vouchers on a regular basis.

  1. Figure 01 - Structure

    Entering Lateral Supports and Their Effects in RF-/STEEL EC3

    When designing steel columns or steel beams, it is usually necessary to carry out cross-section and stability analyses. In most cases, cross-section design can be carried out without giving further details; the stability design, however, needs additional user-defined specifications. To a certain extent, the member is cut out from the structure and therefore, the support conditions have to be specified. This is particularly important to determine the ideal critical moment for lateral torsional buckling Mcr. In addition, the correct effective lengths Lcr have to be defined. They are necessary for the internal calculation of the slenderness ratios.
  2. Figure 01 - Structure

    Stability Analysis of Steel Column According to EN 1993-1-1

    This article is about the stability analysis of a steel column with axial compression according to EN 1993-1-1 Clause 6.3.1. Additionally, a variation study is carried out aiming at steel optimization.
  3. Figure 01 - Wind Zones of Germany

    Wind Load on Monopitch and Duopitch Roofs in Germany

    In Germany, DIN EN 1991-1-4 with the National Annex DIN EN 1991-1-4/NA regulates the wind loads. The standard applies to civil engineering works up to an altitude of 300 m.
  4. Figure 01 - Structure, Loading, Internal Forces

    Cross-Section Design of Two-Span Beam

    The cross-section class of a two-span beam will be designed in the following. In addition, the necessary cross-section designs will be performed. The global stability failure will be excluded due to sufficient stabilizing measures.
  5. Figure 01 - Structure with Loading

    Modeling a Girder Grillage

    The structural analysis of a girder grillage is usually no big deal when using computer-aided calculation. There are different options to display and analyze a structure. They include, for example, the conventional way with performing structural analysis of components or modeling the entire structure.
  6. Figure 01 - Hall Frame as Basis for Surface Model

    Modeling Joints as Surface Model

    With RF-/FRAME-JOINT Pro, it is possible to design frame joints according to DIN 18800 or Eurocode 3. When considering non-standardized joints or taking a closer look at the joint and its behavior, it is recommended to use a modeling as surface model. The following article will show how such a model is created in principle.
  7. Classification of Surfaces Total Pressure Coefficients

    Determination of Wind Loads for Canopy Roof Structures According to EN 1991-1-4

    If a canopy roof, for example a filling station roof, should be designed, a load determination having regard to Section 7.3 of EN 1991-1-4 is required. This article shows with an example the design of a slightly inclined troughed roof.
  8. Determination of the Maximum Horizontal and Vertical Loads to Calculate the Stability Coefficient

    Consideration of P-Delta Effects (Second-Order Analysis) in the Response Spectrum Analysis According to ASCE 7-16

    RFEM offers the option to perform a response spectrum analysis according to ASCE 7-16. This standard describes the determination of seismic loads for the US-American market. It might happen that the so-called P-Delta effect has to be considered due to the stiffness of the entire structure to be able to calculate the internal forces and carry out the design.
  9. Figure 01 - Load Case 1

    Warping Torsion Analysis According to AISC Design Guide 9

    The design of a torsional loaded beam according to AISC Design Guide 9 will be shown based on a verification example. The design will be performed with the RF-STEEL AISC add-on module and the RF-STEEL Warping Torsion module extension with 7 degrees of freedom.
  10. Figure 01 - Cross-Section

    Stiffened Buckling Panels According to EN 1993-1-5, Section 4.5

    In SHAPE-THIN, it is possible to perform the calculation of stiffened buckling panels according to Section 4.5 of EN 1993-1-5. For stiffened buckling panels, the effective surfaces due to local buckling of the single panels in the plate and in the stiffeners as well as the effective surfaces from the entire panel buckling of the stiffened entire panel have to be considered.

1 - 10 of 119

Contact us

Contact to Dlubal

Do you have any questions or need advice?
Contact us or find various suggested solutions and useful tips on our FAQ page.

+49 9673 9203 0

info@dlubal.com

First Steps

First steps

We provide hints and tips to help you get started with the main programs RFEM and RSTAB.

Powerful and Capable Software

“I think the software is so powerful and capable that people will really value its power when they get properly introduced to it.”