Knowledge Base

Search





Why Dlubal Software?

Solutions

  • More than 45,000 users in 95 countries
  • One software package for all application areas
  • Short learning time and intuitive handling
  • Service provided by experienced engineers
  • Excellent price/performance ratio
  • Flexible modular concept, extensible according to your needs
  • Scalable license system with single and network licenses
  • Proven software used in many well-known projects

Newsletter

Receive information including news, useful tips, scheduled events, special offers, and vouchers on a regular basis.

  1. Figure 01 - Influence of the Load Duration on the Design Value of the Strength

    Load Combinations in Timber Structures for European and American Timber Standards

    In addition to determine loads, there are some particularities concerning the load combinatorics in timber design which have to be considered. Contrary to steel structures where the largest loading results from all unfavorable actions, in timber construction, the strength values are dependent on the load duration and the timber humidity. Special characteristics have to be considered as well for the serviceability limit state design. The following article discusses the effects on the design of wooden elements and how this is possible with RSTAB and RFEM.

  2. Figure 01 - Wind Zones of Germany

    Wind Load on Monopitch and Duopitch Roofs in Germany

    In Germany, DIN EN 1991-1-4 with the National Annex DIN EN 1991-1-4/NA regulates the wind loads. The standard applies to civil engineering works up to an altitude of 300 m.
  3. Figure 01 - Real Model and Structural System

    Considering End Releases Between Surfaces

    This article deals with considering end releases between surfaces with line hinges and line releases. Examples are joints in reinforced concrete structures or frame joints in cross-laminated timber structures.
  4. Figure 01 - Format Conversion Factor, KF, when Designing per the 2018 NDS and LRFD in RF-LAMINATE

    2018 NDS Updates for Cross-Laminated Timber Design

    The American Wood Council (AWC) has released the 2018 Edition of the National Design Specification (NDS) for Wood Construction. This is the second edition of the NDS to contain a chapter dedicated to cross-laminated timber (CLT) design. Therefore, a couple of revisions were included in the 2018 NDS when compared to the previous 2015 Edition.
  5. Classification of Surfaces Total Pressure Coefficients

    Determination of Wind Loads for Canopy Roof Structures According to EN 1991-1-4

    If a canopy roof, for example a filling station roof, should be designed, a load determination having regard to Section 7.3 of EN 1991-1-4 is required. This article shows with an example the design of a slightly inclined troughed roof.
  6. Determination of the Maximum Horizontal and Vertical Loads to Calculate the Stability Coefficient

    Consideration of P-Delta Effects (Second-Order Analysis) in the Response Spectrum Analysis According to ASCE 7-16

    RFEM offers the option to perform a response spectrum analysis according to ASCE 7-16. This standard describes the determination of seismic loads for the US-American market. It might happen that the so-called P-Delta effect has to be considered due to the stiffness of the entire structure to be able to calculate the internal forces and carry out the design.
  7. Figure 01 - Structural System and Cross-Section Dimension According to [1]

    Modeling of Semi-Rigid Composite Beam Made of Timber as Surface Model

    There are several options to calculate a semi-rigid composite beam. They differ primarily in the type of modeling. Whereas the Gamma method ensures a simple modeling, additional efforts are required when using other methods (e.g. shear analogy) for the modeling which are, however, offset by the much more flexible application compared to the Gamma method.
  8. Figure 01 - Snow Load Zones of Germany

    Snow Load on Monopitch and Duopitch Roofs

    In Germany, DIN EN 1991-1-3 with the National Annex DIN EN 1991-1-3/NA regulates the snow loads. The standard applies to civil engineering works at an altitude of up to 1,500 m above sea level.
  9. Figure 01 - Modelling Curved Beams

    Design of Curved Glulam Beams According to ANSI/AWC NDS

    RFEM offers the possibility to model also curved beams. To do this, a curved line must be created first (see Figure 01).This line can then be assigned a beam with a cross-section. The advantages over modelling with beam segments are the easier handling during the modelling as well as the clearer results output of the internal forces.

  10. Figure 01 - Structural System

    Forces by Screw in Main-Connected Beam Joint

    RF-/JOINTS Timber - Timber to Timber allows you to design main-connected beam joints. This article explains the determination of forces in screws of a beam connected to a torsionally rigid main beam.

1 - 10 of 60

Contact us

Contact to Dlubal

Do you have any questions or need advice?
Contact us or find various suggested solutions and useful tips on our FAQ page.

+49 9673 9203 0

info@dlubal.com

First Steps

First steps

We provide hints and tips to help you get started with the main programs RFEM and RSTAB.

Powerful and Capable Software

“I think the software is so powerful and capable that people will really value its power when they get properly introduced to it.”