Knowledge Base

Search





Why Dlubal Software?

Solutions

  • More than 45,000 users in 95 countries
  • One software package for all application areas
  • Short learning time and intuitive handling
  • Service provided by experienced engineers
  • Excellent price/performance ratio
  • Flexible modular concept, extensible according to your needs
  • Scalable license system with single and network licenses
  • Proven software used in many well-known projects

Newsletter

Receive information including news, useful tips, scheduled events, special offers, and vouchers on a regular basis.

  1. Figure 01 - Settings for the Deformation Analysis with RF-CONCRETE Deflect

    Distribution Coefficient ζ in the Deformation Analysis of Reinforced Concrete Components

    Performing serviceability limit state design also includes taking into account the allowable deformation. The calculation of the deformation of reinforced concrete components depends on whether or not the observed cross-section is cracking under the applied loading. The governing control parameter in RF-CONCRETE Deflect is the distribution coefficient ζ.
  2. Figure 01 - Adjusted Value Range

    Documenting Graphical Results of Reinforcement in RF-CONCRETE Surfaces

    RFEM offers different options to display results graphically which have been determined in RF-CONCRETE Surfaces. This article gives an overview of these options.
  3. Determination of the Degrees of Restraint of the Column Ends Taking Into Acount the Stiffness of the Connecting Beam

    Determination of Effective Lengths in RF-/CONCRETE Columns

    With RF-/CONCRETE Columns, it is possible to determine effective lengths for columns automatically. This article describes which entries are necessary and how the calculation of the effective lengths is carried out.
  4. Creep and Relaxation

    Definition of Stress Losses From Relaxation for Prestressed Concrete Design

    When designing prestressed concrete components, the time-dependent stress losses from creeping, shrinkage and relaxation have to be considered. The consideration of relaxation losses when designing prestressed concrete in RF-TENDON and RF-TENDON Design is discussed in detail in the following.
  5. Figure 01 - Setting: Reinforcement Direction With Main Tension Force in the Considered Element

    Secondary Reinforcement According to DIN EN 1992-1-1 9.2.1 to Ensure Ductile Structural Component Behavior

    The secondary reinforcement according to DIN EN 1992-1-1 9.2.1 is used to ensure the desired structural behavior. It should avoid failure without prior notification. The minimum reinforcement has to be arranged independently of the size of the actual loading.
  6. Figure 01 - Example Model

    Punching Shear Design with Definition of Perimeters

    With RF-PUNCH Pro, the punching shear design can be performed according to 6.4, EN 1992-1-1. In the following example, the design according to DIN EN 1992-1-1 will be presented first with automatic design of the inner and outer perimeters and then on the basis of the inner perimeters defined by the user on a simple example.

  7. Figure 01 - Structure

    Design of Big Openings in Beams and Downstand Beams

    Since the ultimate limit state of beams in the area of openings is affected, particular attention should be payed to this. In general, small openings can be sufficiently covered by adapting the beam structure to the openings. For big openings, it is necessary to consider and model the area separately.
  8. Figure 01 - RFEM Model of Residential Building with Prestressed Concrete Ceiling

    Prestressed Concrete Design in RFEM

    Efficient design of prestressed structural components requires a few additional steps that go beyond the standard reinforced concrete design, from modelling tendons, to the calculation of equivalent loads, to the cross-section resistance design. Therefore, it is important that the software for prestressed concrete design is structured and the navigation is possible in the program. RFEM with two add-on modules RF-TENDON and RF-TENDON Design fulfils these requirements and allows engineers to carry out the complete design of prestressed beams, frames, plates, buildings and bridges according to EN 1992-1-1 with National Annexes and SIA 262.

  9. Figure 01 - Notations for Connection Between Flange and Web (Source: [1])

    Downstand Beams, Ribs, T-Beams: Shear Between Web and Flanges

    In order to ensure the effects of panels, which should act as tensile or compression chords, it is necessary to connect them to the web in a shear-resistant manner. This connection is obtained in a similar way as the shear transfer in the joint between concreting sections by using the interaction between compressive struts and ties. In order to ensure the shear resistance, it must be verified that the compressive strut resistance is given and the tie force can be absorbed by the transverse reinforcement.

  10. Figure 01 - System and Loading

    Nonlinear Analysis in RF-/CONCRETE

    When designing reinforced concrete components according to EN 1992‑1‑1 [1], it is possible to use nonlinear calculation methods to determine internal forces for the ultimate limit state and the serviceability limit state. In this case, the internal forces and deformations are determined with respect to their nonlinear behaviour. The analysis of stresses and strains in cracked state usually provides the deflections, which clearly exceed the linearly determined values.

1 - 10 of 38

Contact us

Contact to Dlubal

Do you have any questions or need advice?
Contact us or find various suggested solutions and useful tips on our FAQ page.

+49 9673 9203 0

info@dlubal.com

First Steps

First steps

We provide hints and tips to help you get started with the main programs RFEM and RSTAB.

Powerful and Capable Software

“I think the software is so powerful and capable that people will really value its power when they get properly introduced to it.”