Diemersteiner Tal - Free Form, Germany

Structures Analysed with Dlubal Software

  • Customer Project

Customer Project

In 2019, an extraordinary pavilion was constructed in Diemersteiner Tal near Kaiserslautern, Germany. The structure is constructed entirely from timber and did not require any metal fasteners.

Owner Technical University of Kaiserslautern, Germany
www.uni-kl.de
Architectural Design Jun. Prof. Dr. Christopher Robeller
"Digital Timber Construction DTC"
Technical University of Kaiserslautern
www.uni-kl.de
Structural Design PIRMIN JUNG
www.pirminjung.de
Timber Structure CLTECH GmbH & Co. KG
cltech.de

Model Parameters

Model

The pavilion is located at the Technical University of Kaiserslautern Architecture Faculty’s new timber research campus. The structure serves as the building entrance.

The structural analysis and design for this unique, one-of-a-kind building was carried out by PIRMIN JUNG. For the cross-laminated timber (CLT) surface design, as well as the connections, the engineers of PIRMIN JUNG used the RFEM finite element program. The Digital Timber Construction DTC research group at the Technical University of Kaiserslautern was headed by Jun. Prof Dr. Christopher Robeller. This group developed software to manufacture light timber CLT panel structures.

Structure

The wooden pavilion is approximately 13 ft high and spans 39 ft. Three large arched wings stem from the domed roof and connect to the foundation. The shell structure consists of 3.94-inch-thick CLT panels. Because the components are subjected to little bending and rather mainly to compression, fewer materials were required.

The pentagonal to heptagonal arch components required a mathematical algorithm. More than 200 unique geometrical surfaces about 24 in wide were created through computer calculations. These small components were manufactured from scrap pieces typically deemed as waste during the production of multi-story building wall elements.

The adjacent panels are connected with glued-in beech dowels and X-fix connectors, which are plywood dovetail-shaped timber-to-timber connectors. The X-fix connectors resist the tension and shear forces resulting from the adjacent in-plane surface displacement. They also ensure gap-free connection for the panels during assembly. The glued-in beech dowels fix the plates and transfer the transverse forces acting perpendicular to the plates.

The entire project was completed in eight short weeks, from the initial planning to the final construction. The production and assembly itself took only eight days. Load tests using six OSB panels with a height of 4.59 ft (corresponding to a weight of about 18.7 tons) were able to verify the dome’s mathematically proven high load-bearing capacity after the completion of the construction.

Project Location

Technical University of Kaiserslautern
Erwin-Schrödinger-Strasse 52
67663 Kaiserslautern
Germany

Keywords

Pavilion Cross-laminated timber CLT

Write Comment...

Write Comment...

  • Views 1553x
  • Updated 29 October 2021

Contact Us

Contact Dlubal

Do you have further questions or need advice? Contact us via phone, email, or chat or find suggested solutions and useful tips on our FAQ page available 24/7.

+49 9673 9203 0

info@dlubal.com

Event Invitation

NCSEA Structural Engineering Summit

Conference 15 February 2022 - 16 February 2022

Online Training | English

Eurocode 5 | Timber Structures According to DIN EN 1995-1-1

Online Training 17 March 2022 8:30 AM - 12:30 PM CET

Event Invitation

2022 NASCC: The Steel Conference

Conference 23 March 2022 - 25 March 2022

Event Invitation

International Mass Timber Conference

Conference 12 April 2022 - 14 April 2022

Event Invitation

Structures Congress 2022

Conference 21 April 2022 - 22 April 2022

Consider Construction Stages \n in RFEM 6

Consider Construction Stages in RFEM 6

Webinar 13 January 2022 2:00 PM - 3:00 PM CET

Timber Structure Design in RFEM 6 and RSTAB 9

Model and Design Timber Structures in RFEM 6 and RSTAB 9

Webinar 11 November 2021 2:00 PM - 3:00 PM CET

Glass Design with Dlubal Software

Glass Design with Dlubal Software

Webinar 8 June 2021 2:00 PM - 2:45 PM

Blast Time History Analysis in RFEM

Blast Time History Analysis in RFEM

Webinar 13 May 2021 2:00 PM - 3:00 PM EST

Timber Structures | Part 2: Design

Timber Beam and Surface Structures | Part 2: Design

Webinar 11 May 2021 2:00 PM - 3:00 PM

Plate and Shell Buckling Utilizing Dlubal Software

Plate and Shell Buckling Utilizing Dlubal Software

Webinar 30 March 2021 2:00 PM - 2:45 PM

CSA S16: 19 Steel Design in RFEM

CSA S16:19 Steel Design in RFEM

Webinar 10 March 2021 2:00 PM - 3:00 PM EST

The Most Common User Errors With RFEM and RSTAB

The Most Common User Errors With RFEM and RSTAB

Webinar 4 February 2021 2:00 PM - 3:00 PM CET

ADM 2020 Member Design in RFEM

ADM 2020 Member Design in RFEM

Webinar 19 January 2021 2:00 PM - 3:00 PM EST

Dlubal Info Day

Dlubal Info Day Online | 15 December 2020

Webinar 15 December 2020 9:00 AM - 4:00 PM CET

Stability Design in Steel Construction with RFEM and RSTAB

Stability Design in Steel Construction with RFEM and RSTAB

Webinar 1 December 2020 2:00 PM - 2:45 PM CET

FEM - Troubleshooting and Optimisation in RFEM

FEA Troubleshooting and Optimization in RFEM

Webinar 11 November 2020 2:00 PM - 3:00 PM EST

Soil-Structure Interaction in RFEM

Soil-Structure Interaction in RFEM

Webinar 27 October 2020 2:00 PM - 2:45 PM CET

NBC 2015 Modal Response Spectrum Analysis in RFEM

Webinar 30 September 2020 2:00 PM - 3:00 PM EST

RFEM 5
RFEM

Main Program

Structural engineering software for finite element analysis (FEA) of planar and spatial structural systems consisting of plates, walls, shells, members (beams), solids, and contact elements

Price of First License
3,540.00 USD
RFEM 5
RF-TIMBER Pro

Add-on Module

Timber design according to Eurocode 5, SIA 265, and/or DIN 1052

Price of First License
1,120.00 USD
RFEM 5
RF-STABILITY

Add-on Module

Stability analysis according to the eigenvalue method

Price of First License
1,030.00 USD
RFEM 5
RF-IMP

Add-on Module

Generation of equivalent geometric imperfections and pre-deformed initial structures for nonlinear calculations

Price of First License
760.00 USD