RF-FORM-FINDING Add-on Module for RFEM

Product Video: Add-on Modules RF-FORM-FINDING & RF-CUTTING-PATTERN

Dlubal Webinar: Form-Finding and Cutting Patterns of Membrane Structures in RFEM

The best I have used

“RFEM is the best I have used. I have experience with RISA, STAAD, ETABS, Visual Analysis, and others. In the tensile/fabric structure world, I've tried NDN, Forten, etc. Once you get used to RFEM's interface, it has no comparison to the others. Even with typical structures, it's much easier.”

TensiNet

Dlubal Software is a member of the TensiNet Association.

Form-Finding of Membrane, Cable, Shell and Beam Structures

The RF-FORM-FINDING add‑on module searches for shapes of structures subjected to tension or compression, such as membrane and cable structures, shells, and so on. The shape is calculated by the equilibrium between the surface stress (specified prestress and additional load such as self‑weight, pressure, etc.), and the given boundary conditions.

The new prestressed shape is afterwards used as the initial state for the structural analysis. Cutting patterns for the membrane structures can be determined by the RF‑CUTTING‑PATTERN add‑on module.

  1. Features

    • Form-finding of:
      • tension loaded membrane and cable structures
      • compression loaded shell and beam structures
      • mixed tension and compression loaded structures
    • Consideration of gas chambers between surfaces
    • Interaction with supporting structure
    • Surfaces as a 2D and members as a 1D element
    • Definition of different prestress conditions for surfaces (membranes and shells)
    • Definition of forces or geometrical requirements for members (cables and beams)
    • Consideration of individual loads (self‑weight, inner pressure, etc.) in the form‑finding process
    • Temporary support definitions for the form-finding process
    • Definition of isotropic or orthotropic material for structural analysis
    • Optional definition of free polygon loads
    • Transformation of form‑found shape elements into NURBS surface elements
    • Possibility of combined form-finding by integration of preliminary form-finding
    • Graphical evaluation of the new form using coloured coordinates and inclination plots
    • Complete documentation of the calculation including user-defined adaptive evaluation figures
    • Optional export of the FE mesh as DXF or Excel file
  2. Prestress parameters for membranes

    Input

    The form-finding function can be activated in the General Data dialog box, tab Options. Prestress (or geometrical requirements for members) can be defined in the parameters for surfaces and members. The form‑finding process is performed by calculation of an RF‑FORM‑FINDING case.

    Steps of the working sequence:

    • Creation of a model in RFEM (surfaces, beams, cables, supports, material definition, etc.)
    • Setting of required prestress for membranes and force or length/sag for members
    • Optional consideration of other loads for the form-finding process in special form‑finding load cases (self‑weight, pressure, steel node weight, etc.)
    • Setting of loads and load combinations for further structural analyses
  3. Calculation parameters

    Calculation

    After starting the calculation, the program performs form‑finding on the entire structure. The calculation takes into account the interaction between the form‑found elements and the supporting structure.

    The form-finding process is performed iteratively as a special nonlinear analysis, inspired by URS (Updated Reference Strategy) by Prof. Bletzinger / Prof. Ramm. In this way, shapes in equilibrium are obtained considering the pre‑defined prestress.

    Furthermore, this method allows you to consider the individual loads such as self‑weight or interior pressure for pneumatic structures in the form‑finding process. The prestress for surfaces can be defined by two different methods:

    • Standard method - prescription of required prestress in a surface
    • Projection method - prescription of required prestress in a projection of a surface, stabilization especially for conical shapes
  4. Deformed FE mesh after form-finding

    Results

    The results of the form‑finding process are a new shape and corresponding inner forces. Usual results such as deformations, forces, stresses, and others can be displayed in the RF‑FORM‑FINDING case.

    This prestressed shape is available as the initial state for all other load cases and combinations in the structural analysis.

    For more ease when defining load cases, the NURBS transformation can be used (Calculation Parameters / Form‑Finding). This feature moves the original surfaces and cables into the position after form‑finding.

    By using the grid points of surfaces or the definition nodes of NURBS surfaces, free loads can be situated on selected parts of the structure.

Contact us

Contattaci

Do you have any questions about our products? Do you need advice for your current project? 
Contact us or find various suggested solutions and useful tips on our FAQ page.

+49 9673 9203 0

info@dlubal.com

Customer Projects

Customer Projects designed by Dlubal Software products

Interesting customer projects designed with the structural analysis programs by Dlubal Software.

Price (VAT excl.)

Price
1,750.00 USD

Price is only valid for the software usage in United States.

RFEM Main Program
RFEM 5.xx

Main Program

Structural engineering software for finite element analysis (FEA) of planar and spatial structural systems consisting of plates, walls, shells, members (beams), solids and contact elements

RFEM Steel and Aluminium Structures
RF-STEEL 5.xx

Add-on Module

Stress analysis of steel surfaces and members

RFEM Steel and Aluminium Structures
RF-STEEL EC3 5.xx

Add-on Module

Design of steel members according to Eurocode 3

RFEM Concrete Structures
RF-CONCRETE 5.xx

Add-on Module

Design of reinforced concrete members and surfaces (plates, walls, planar structures, shells)

RFEM Dynamic Analysis
RF-DYNAM Pro - Natural Vibrations  5.xx

Add-on Module

Dynamic analysis of natural frequencies and mode shapes of member, surface, and solid models

RFEM Other
RF-STABILITY 5.xx

Add-on Module

Stability analysis according to the eigenvalue method

RFEM Other
RF-MAT NL 5.xx

Add-on Module

Consideration of nonlinear material laws

RFEM Concrete Structures
EC2 for RFEM 5.xx

Module Extension for RFEM

Extension of the modules for reinforced concrete design by the Eurocode 2 design

RFEM Dynamic Analysis
RF-DYNAM Pro - Forced Vibrations 5.xx

Add-on Module

Dynamic and seismic analysis including time history analysis and multi-modal response spectrum analysis

RFEM Dynamic Analysis
RF-DYNAM Pro - Equivalent Loads 5.xx

Add-on Module

Seismic and static load analysis using the multi-modal response spectrum analysis

RFEM Other
RF-IMP 5.xx

Add-on Module

Generation of equivalent geometric imperfections and pre-deformed initial structures for nonlinear calculations

RFEM Glass Structures
RF-GLASS 5.xx

Add-on Module

Design of single-layer, laminated and insulating glass

RFEM Timber Structures
RF-TIMBER Pro 5.xx

Add-on Module

Timber design according to Eurocode 5, SIA 265 and/or DIN 1052

RFEM Steel and Aluminium Structures
RF-ALUMINUM 5.xx

Add-on Module

Design of aluminium members according to Eurocode 9

RFEM Other
RF-SOILIN 5.xx

Add-on Module

Soil-structure interaction analysis and determination of elastic foundation coefficients based on soil data

RFEM Concrete Structures
RF-FOUNDATION Pro 5.xx

Add-on Module

Design of single, bucket and block foundations

RFEM Concrete Structures
RF-CONCRETE NL 5.xx

Add-on Module

Physical and geometrical nonlinear calculation of beam and plate structures consisting of reinforced concrete

RFEM Connections
RF-FRAME-JOINT Pro 5.xx

Add-on Module

Design of rigid bolted frame joints according to Eurocode 3 or DIN 18800

RFEM Connections
RF-HSS 5.xx

Add-on Module

Design of connections with hollow cross-sections according to Eurocode 3

RFEM Connections
RF-JOINTS Steel - Column Base 5.xx

Add-on Module

Design of hinged and restrained column base footings according to Eurocode 3