RF-/STEEL Plasticity | Design and Results

  • Knowledge Base

Product Feature

16 September 2016

000168

Calculation

Steel Structures

Eurocode 3

The cross-section resistance design considers all internal force combinations.

If cross-sections are designed according to the PIF method, the internal forces of the cross-section, which are acting in the system of the principal axes related to the centroid or the shear center, are transformed into a local system of coordinates that rests in the web center and is oriented in the web direction.

The individual internal forces are distributed on the top and bottom flange as well as on the web and the limit internal forces of the cross‑section parts are determined. Provided that the shear stresses and the flange moments can be absorbed, the axial load bearing capacity and the ultimate load capacity for bending of the cross‑section are determined by means of the remaining internal forces and compared with the existing force and moment. If the shear stress or the flange resistance is exceeded, the design cannot be performed.

The Simplex Method determines the plastic enlargement factor with the relevant internal force combination using the SHAPE‑THIN calculation. The reciprocal value of the enlargement factor represents the design ratio of the cross‑section.

Elliptical cross-sections are analyzed for their plastic load‑bearing capacity on the basis of an analytical nonlinear optimization procedure. This method is similar to the Simplex Method. Separate design cases enable flexible analysis of selected members, sets of members, and actions as well as of individual cross‑sections.

You can adjust design-relevant parameters such as calculation of all cross‑sections according to the Simplex Method.

The results of the plastic design are displayed in RF‑/STEEL EC3 as usual. The respective result tables include internal forces, cross‑section classes, overall design, and other result data.

Write Comment...

Write Comment...

RFEM for Students | USA

Online Training 21 April 2021 1:00 PM - 4:00 PM CDT

Online Training | English

Eurocode 3 | Steel structures according to DIN EN 1993-1-1

Online Training 6 May 2021 8:30 AM - 12:30 PM CEST

Online Training | English

RFEM for Students | Part 3

Online Training 15 June 2021 2:00 PM - 4:30 PM CEST

Plate and Shell Buckling Utilizing Dlubal Software

Plate and Shell Buckling Utilizing Dlubal Software

Webinar 30 March 2021 2:00 PM - 2:45 PM CEST

CSA S16: 19 Steel design in RFEM

CSA S16:19 Steel Design in RFEM

Webinar 10 March 2021 2:00 PM - 3:00 PM CDT

Dlubal Info Day

Dlubal Info Day Online | 15 December 2020

Webinar 15 December 2020 9:00 AM - 4:00 PM CET

Stability Design in Steel Construction with RFEM and RSTAB

Stability Design in Steel Construction with RFEM and RSTAB

Webinar 1 December 2020 2:00 PM - 2:45 PM CET

Documenting Results in the RFEM Printout Report

Documenting Results in the RFEM Printout Report

Webinar 25 August 2020 2:00 PM - 2:45 PM CEST

Programmable COM Interface for RFEM/RSTAB

Programmable COM Interface for RFEM/RSTAB

Webinar 12 May 2020 3:00 PM - 3:45 PM CEST

Designing Cold-Formed Steel Sections According to Eurocode 3

Designing Cold-Formed Steel Sections According to Eurocode 3

Webinar 30 April 2020 3:00 PM - 3:45 PM CEST

Membrane Structures with Wind Loads From CFD Wind Simulation

Membrane Structures with Wind Loads From CFD Wind Simulation

Webinar 24 March 2020 3:00 PM - 4:15 PM CET

Nonlinear Time History Analysis in RFEM

Nonlinear Time History Analysis in RFEM

Webinar 8 May 2018 3:00 PM - 4:00 PM CDT