Product Video: Add-on Modules RF-FORM-FINDING & RF-CUTTING-PATTERN

Dlubal Webinar: Form-Finding and Cutting Patterns of Membrane Structures in RFEM

The best I have used

“RFEM is the best I have used. I have experience with RISA, STAAD, ETABS, Visual Analysis, and others. In the tensile/fabric structure world, I've tried NDN, Forten, etc. Once you get used to RFEM's interface, it has no comparison to the others. Even with typical structures, it's much easier.”


Dlubal Software is a member of the TensiNet Association.

Cutting Patterns for Tensile Membrane Structures

The RF-CUTTING-PATTERN add-on module generates and organizes cutting patterns for membrane structures. Boundary conditions of the cutting patterns on curved geometry are determined by boundary lines and independent planar cutting lines or geodesic cutting lines. The flattening process is performed according to the minimum energy theory.

For each pattern, compensation can be applied in the warp and weft direction. It is possible to set a special compensation value for each boundary line as well as overlaps for manufacturing processes.

  1. Features

    • Planar and geodesic cutting lines
    • Flattening of double-curved surface parts of tensioned membranes or pneumatic cushions
    • Definition of cutting patterns by using boundary lines which are not required to be connected
    • Sophisticated flattening based on the minimum energy theory
    • Uniform or linear compensation by warp and weft direction
    • Possibility of different compensations for boundary lines
    • Welding and boundary allowances
    • Adaptable data organization (any additional modification of input data is considered up to the final “weld”)
    • Graphical display of cutting patterns
    • Statistical information about each cutting pattern (width, length, size)
    • Option to automatically generate cutting patterns from cells
  2. Dividing membrane surface by using the "Cut via Two Lines" line type


    RF-CUTTING-PATTERN is activated by selecting the respective option in the Options tab in General Data of any RFEM model. After activating the add‑on module, a new object “Cutting Patterns” is displayed under Model Data. If the membrane surface distribution for cutting in the basic position is too large, you can divide the surface by cutting lines (line types “Cut via Two Lines” or “Cut via Section”) in the corresponding partial strips.

    Then you can define the individual entries for each cutting pattern by using the “Cutting Pattern” object. Here you can set boundary lines, compensations, and allowances.

    Steps of the working sequence:

    • Creation of cutting lines
    • Creation of the pattern by selecting its boundary lines or using a semi‑automatic generator
    • Free selection of warp and weft orientation by entering an angle
    • Application of compensation values
    • Optional definition of different compensations for boundary lines
    • Different allowances (welding, boundary line)
    • Preliminary representation of the cutting pattern in the graphic window at the side without starting the main nonlinear calculation
  3. Calculation

    The nonlinear calculation adopts the real mesh geometry of planar, buckled, simple curved, or double curved surface components from the selected cutting pattern and flattens this surface component in compliance with the minimization of distortion energy, assuming defined material behavior.

    Basically, this method attempts to compress the mesh geometry in a press assuming frictionless contact and to find such a state where the stresses due to flattening the component in the plane are in equilibrium. In this way, the minimum energy and the optimum accuracy of the cutting pattern are achieved. Compensation for warp and weft as well as compensation for boundary lines are considered. Then, the defined allowances on boundary lines are applied to the resulting planar surface geometry.

    • Minimization of distortion energy in the flattening process for very accurate cutting patterns
    • Application for almost all mesh arrangements
    • Recognition of adjacent cutting pattern definitions to keep the same length
    • Mesh application for main calculation
  4. Representation of cutting pattern on RFEM model


    After the calculation, the “Point Coordinates” tab appears in the cutting pattern dialog box, which shows the result in the form of a table with coordinates and a surface in the graphical window. The coordinate table presents new flattened coordinates relative to the centroid of the cutting pattern for each mesh node. Furthermore, the cutting pattern with the coordinate system at the centroid is represented in the graphical window. When selecting a table cell, the respective node is displayed with an arrow in the graphic. In addition, the area of the cutting pattern is displayed below the node table.

    Moreover, standard stress/strain results for each pattern are displayed in the RF‑CUTTING‑PATTERN load case.

    • Results in a table including information about the cutting pattern
    • Intelligent table relating to the graphic
    • Results of flattened geometry in a DXF file
    • Results in the global printout report
    • Results of strains after flattening for the evaluation of patterns

Contact us


Do you have any questions about our products? Do you need advice for your current project? 
Contact us or find various suggested solutions and useful tips on our FAQ page.

(267) 702-2815


Customer Projects

Customer Projects designed by Dlubal Software programs

Interesting customer projects designed with the structural analysis programs by Dlubal Software.


2,240.00 USD

The price is valid for United States.

RFEM Main Program
RFEM 5.xx

Main Program

Structural engineering software for finite element analysis (FEA) of planar and spatial structural systems consisting of plates, walls, shells, members (beams), solids and contact elements

RFEM Tensile Membrane Structures

Add-on Module

Form-finding of tensile membrane and cable Structures

RFEM Steel and Aluminum Structures

Add-on Module

Design of steel members according to Eurocode 3

RFEM Steel and Aluminum Structures

Add-on Module

Stress analysis of steel surfaces and members

RFEM Dynamic Analysis
RF-DYNAM Pro - Natural Vibrations  5.xx

Add-on Module

Dynamic analysis of natural frequencies and mode shapes of member, surface, and solid models

RFEM Dynamic Analysis
RF-DYNAM Pro - Equivalent Loads 5.xx

Add-on Module

Seismic and static load analysis using the multi-modal response spectrum analysis

RFEM Other
RF-MAT NL 5.xx

Add-on Module

Consideration of nonlinear material laws

RFEM Concrete Structures

Add-on Module

Design of reinforced concrete members and surfaces (plates, walls, planar structures, shells)

RFEM Concrete Structures
RF-CONCRETE Columns 5.xx

Add-on Module

Reinforced concrete design according to the model column method (method based on nominal curvature)

RFEM Steel and Aluminum Structures

Add-on Module

Design of steel members according to the American standard ANSI/AISC 360

RFEM Concrete Structures

Add-on Module

Design of single, bucket and block foundations

RFEM Other

Add-on Module

Stability analysis according to the eigenvalue method

RFEM Dynamic Analysis
RF-DYNAM Pro - Forced Vibrations 5.xx

Add-on Module

Dynamic and seismic analysis including time history analysis and multi-modal response spectrum analysis

RFEM Glass Structures

Add-on Module

Design of single-layer, laminated and insulating glass

RFEM Other

Add-on Module

Comparison of results with defined limit values

RFEM Other

Add-on Module

Soil-structure interaction analysis and determination of elastic foundation coefficients based on soil data

RFEM Steel and Aluminum Structures

Add-on Module

Design of aluminium members according to Eurocode 9

RFEM Other
RF-IMP 5.xx

Add-on Module

Generation of equivalent geometric imperfections and pre-deformed initial structures for nonlinear calculations

RFEM Other
RF-COM 5.xx

Add-on Module

Programmable interface (API) based on the COM technology

RFEM Concrete Structures
RF-CONCRETE Deflect 5.xx

Add-on Module

Analytical deformation analysis of plate structures consisting of reinforced concrete