Rehabilitation of Müngsten Viaduct, Germany

Structures Analysed with Dlubal Software

  • Customer project

Customer Project

The Müngsten Viaduct, completed in 1897, ranks among the most important buildings in steel bridge construction in the world today. With a height of 351 ft over the Wupper River, it is Germany's highest railway bridge. The design derives from the Garabit Viaduct, completed in 1884, which is located near Saint-Flour in southern France and was designed by Gustave Eiffel.

Client
DB Netz AG, Produktionsdurchführung Düsseldorf, Germany
www.dbnetze.com
Project Management DB Engineering & Consulting GmbH, Cologne, Germany
www.db-engineering-consulting.de
General Planning IGS Ingenieure GmbH & Co. KG
www.igs-ib.de
Structural Reanalysis IWS Beratende Bauingenieure
www.iws-idstein.de
Check of Structural Analysis PSP - Professor Sedlacek und Partner, Dortmund, Germany
www.psp-ingenieure.de

Model

The bridge connects the two cities Solingen and Remscheid. Approximately 120 years of rail traffic and climatic conditions have led to various damages to the structure. Furthermore, deficits in component design resulted from modified requirements of currently valid standards. Therefore, a rehabilitation of the structure for further usage of at least 30 years was necessary.

The structural reanalysis of the bridge has been performed by IWS Ingenieure. The check of the bridge analysis has been carried out by PSP - Professor Sedlacek and Partner by using RSTAB.

Structure

The bridge has a total length of 1525 ft. It consists of an arc construction with a span of 577 ft and trestle bridges on both sides with individual lengths of 98 and 147 ft which are supported on roller bearings on truss pillars.

There is a lane on top designed as open girder grillage and on that there is a two‑tier railway track superstructure.

Recalculation

The calculation for the operation and for the check has been performed on the 3D framework model. The modeling has been carried out in consideration of the detected damages. For example, special attention has been paid to the point of hinge to display limited moving roller bearings close to reality.

In contrast to the original structural analysis, 13 construction load cases have been considered for the first time as well. For example position manipulation of the truss arc. At that time, it was set up in the classic cantilever construction method with a cantilever length of up to 98 ft. The construction stages have a significant influence on the stress condition for the load case self‑weight.

In addition to the usual linearly variable loads from temperature, wind, acceleration/braking and lateral impact, 3 traffic loads (load effect UIC71 etc.) have been applied. The recalculation has been verified and calibrated by, among other things, conducted test runs under load conditions.

Results and Rehabilitation

With the recalculation it was possible to calculate the damages on the structure. In single structural components such as longitudinal and secondary beams of the road, wind bracings and anchorages, the design ratios resulted in partly more than 200 %. This led to the decision that the bridge must be thoroughly reconstructed.

The most serious intervention has been the replacement of the bridge lane which required a complete closure of the railway line. Moreover, it was necessary to reduce the load level. The rehabilitation of the trestle bridges, pillars, foundation elements as well as of the arc can take place during reduced railway operation.

With the decision to rehabilitate the Müngsten Viaduct despite high financial investments, an outstanding steel bridge structure is preserved.

Project Location

Müngstener Brückenweg
42659 Solingen, Germany

Keywords

Müngsten viaduct Steel bridge construction Germany's highest railway bridge

Write Comment...

Write Comment...

  • Views 1477x
  • Updated 14 October 2021

Contact us

Contact Dlubal

Do you have questions or need advice?
Contact our free e-mail, chat, or forum support or find various suggested solutions and useful tips on our FAQ page.

+49 9673 9203 0

info@dlubal.com

Event Invitation

2022 NASCC: The Steel Conference

Conference 23 March 2022 - 25 March 2022

Event Invitation

International Mass Timber Conference

Conference 12 April 2022 - 14 April 2022

Event Invitation

Structures Congress 2022

Conference 21 April 2022 - 22 April 2022

Modeling and Design of Steel Structures in RFEM 6 and RSTAB 9

Modeling and Design of Steel Structures in RFEM 6 and RSTAB 9

Webinar 20 October 2021 2:00 PM - 3:00 PM CEST

Effective BIM Workflows Between RSTAB & RFEM and IDEA StatiCa

Effective BIM Workflows Between RSTAB & RFEM and IDEA StatiCa

Webinar 5 August 2021 11:00 AM - 12:00 PM CEST

Blast Time History Analysis in RFEM

Blast Time History Analysis in RFEM

Webinar 13 May 2021 2:00 PM - 3:00 PM EDT

Plate and Shell Buckling Utilizing Dlubal Software

Plate and Shell Buckling Utilizing Dlubal Software

Webinar 30 March 2021 2:00 PM - 2:45 PM CEST

CSA S16: 19 Steel design in RFEM

CSA S16:19 Steel Design in RFEM

Webinar 10 March 2021 2:00 PM - 3:00 PM EDT

The Most Common User Errors With RFEM and RSTAB

The Most Common User Errors With RFEM and RSTAB

Webinar 4 February 2021 2:00 PM - 3:00 PM BST

Dlubal Info Day

Dlubal Info Day Online | 15 December 2020

Webinar 15 December 2020 9:00 AM - 4:00 PM BST

Stability Design in Steel Construction with RFEM and RSTAB

Stability Design in Steel Construction with RFEM and RSTAB

Webinar 1 December 2020 2:00 PM - 2:45 PM BST

Programmable COM Interface for RFEM/RSTAB

Programmable COM Interface for RFEM/RSTAB

Webinar 12 May 2020 3:00 PM - 3:45 PM CEST

Designing Cold-Formed Steel Sections According to Eurocode 3

Designing Cold-Formed Steel Sections According to Eurocode 3

Webinar 30 April 2020 3:00 PM - 3:45 PM CEST

Webinar 3:

Webinar 3: BIM Integration and RFEM

Webinar 20 August 2019 3:00 PM - 4:00 PM

Extended modeling functions in RFEM

Webinar 2: Advanced modeling features in RFEM

Webinar 31 July 2019 3:00 PM - 4:00 PM

Webinar 1: Introduction to the FEA Program RFEM

Webinar 1: Introduction to the FEA Program RFEM

Webinar 18 June 2019 3:00 PM - 4:00 PM

Timber Arch Structure

Timber Arch Structure Design per NDS-2018 in RFEM

Webinar 17 April 2019 3:00 PM - 4:00 PM

Tensile Membrane Structure Design in RFEM

Tensile Membrane Structure Design in RFEM

Webinar 20 February 2019 3:00 PM - 4:00 PM

Point Supported Glass Design in RFEM

Point Supported Glass Design in RFEM

Webinar 22 January 2019 3:00 PM - 4:00 PM

Optimal BIM Integration with Revit and RFEM

Optimal BIM Integration with Revit and RFEM

Webinar 12 December 2018 3:00 PM - 4:00 PM

RSTAB 8
Structural Frame Analysis Software RSTAB

Main Program

The structural engineering software for design of frame, beam and truss structures, performing linear and nonlinear calculations of internal forces, deformations, and support reactions

Price of First License
2,550.00 USD
RSTAB 8
STEEL

Add-on Module

Stress analysis of steel members

Price of First License
760.00 USD
RSTAB 8
RSMOVE

Add-on Module

Generation of load cases from moving loads for members and sets of members

Price of First License
450.00 USD