Rehabilitation of Müngsten Viaduct, Germany
Customer Project
The Müngsten Viaduct, completed in 1897, ranks among the most important buildings in steel bridge construction in the world today. With a height of 351 ft over the Wupper River, it is Germany's highest railway bridge. The design derives from the Garabit Viaduct, completed in 1884, which is located near Saint-Flour in southern France and was designed by Gustave Eiffel.
Client |
DB Netz AG, Produktionsdurchführung Düsseldorf, Germany www.dbnetze.com |
Project Management |
DB Engineering & Consulting GmbH, Cologne, Germany www.db-engineering-consulting.de |
General Planning |
IGS Ingenieure GmbH & Co. KG www.igs-ib.de |
Structural Reanalysis |
IWS Beratende Bauingenieure www.iws-idstein.de |
Check of Structural Analysis |
PSP - Professor Sedlacek und Partner, Dortmund, Germany www.psp-ingenieure.de |
Model
The bridge connects the two cities Solingen and Remscheid. Approximately 120 years of rail traffic and climatic conditions have led to various damages to the structure. Furthermore, deficits in component design resulted from modified requirements of currently valid standards. Therefore, a rehabilitation of the structure for further usage of at least 30 years was necessary.
The structural reanalysis of the bridge has been performed by IWS Ingenieure. The check of the bridge analysis has been carried out by PSP - Professor Sedlacek and Partner by using RSTAB.
Structure
The bridge has a total length of 1525 ft. It consists of an arc construction with a span of 577 ft and trestle bridges on both sides with individual lengths of 98 and 147 ft which are supported on roller bearings on truss pillars.
There is a lane on top designed as open girder grillage and on that there is a two‑tier railway track superstructure.
Recalculation
The calculation for the operation and for the check has been performed on the 3D framework model. The modeling has been carried out in consideration of the detected damages. For example, special attention has been paid to the point of hinge to display limited moving roller bearings close to reality.
In contrast to the original structural analysis, 13 construction load cases have been considered for the first time as well. For example position manipulation of the truss arc. At that time, it was set up in the classic cantilever construction method with a cantilever length of up to 98 ft. The construction stages have a significant influence on the stress condition for the load case self‑weight.
In addition to the usual linearly variable loads from temperature, wind, acceleration/braking and lateral impact, 3 traffic loads (load effect UIC71 etc.) have been applied. The recalculation has been verified and calibrated by, among other things, conducted test runs under load conditions.
Results and Rehabilitation
With the recalculation it was possible to calculate the damages on the structure. In single structural components such as longitudinal and secondary beams of the road, wind bracings and anchorages, the design ratios resulted in partly more than 200 %. This led to the decision that the bridge must be thoroughly reconstructed.
The most serious intervention has been the replacement of the bridge lane which required a complete closure of the railway line. Moreover, it was necessary to reduce the load level. The rehabilitation of the trestle bridges, pillars, foundation elements as well as of the arc can take place during reduced railway operation.
With the decision to rehabilitate the Müngsten Viaduct despite high financial investments, an outstanding steel bridge structure is preserved.
Project Location
Write Comment...
Write Comment...
Contact us
Do you have questions or need advice?
Contact our free e-mail, chat, or forum support or find various suggested solutions and useful tips on our FAQ page.
Recommended Events
Videos
Models to Download
Knowledge Base Articles

New
Using Buckling Members for Unstable Models
If the calculation of a member model according to the second-order analysis is terminated with an error message, this instability is often caused by failed tension members: As soon as compressive forces appear in a tension member during a calculation step, this member is no longer considered in the following iterations. Thus, the model can become unstable.
Screenshots
Product Features Articles

Material Database with Steels According to the Australian Standard AS/NZS 4600:2005
The material database in RFEM, RSTAB and SHAPE-THIN contains steels according to the Australian standard AS/NZS 4600:2005.Frequently Asked Questions (FAQ)
- How can I perform the design of the tension resistance of a smooth column in a smooth bucket column base, i.e. the design against pulling out of the column?
- How can I create a twisted beam in RFEM?
- In the RF‑/STEEL EC3 add-on module, I obtain an extremely high design ratio for a member in the case of "Biaxial bending, shear and axial force." Although the axial force is relatively high, the design ratio seems to be unrealistic. What is the reason?
- For which programs is the STEEL Warping Torsion add-on module available?
- I have just noticed that the STEEL EC3 add-on module also calculates with γM0 = 1.0 when designing a tension member, although it should actually be γM2 = 1.25. How can I perform the design correctly?
- I design a cross-section created in the SHAPE‑THIN program by using the RF‑STEEL EC3 add-on module, but the program shows the error message "ER006 Invalid type of c/t-part for cross-section of type General." What can I do?
- Is it possible to design intermittent welds in the CRANEWAY add-on module?
- For a buckling analysis, FE‑BUCKLING determines the governing shear stress of τ = 7.45 kN/cm², while RF‑/STEEL gives the result of the maximum shear stress of τ = 8.20 kN/cm². Where does this difference come from?
- Why do I get a design ratio for the stability analysis according to 6.2.9.1 in the STEEL EC3 add-on module? Why is a * added to Equation (6.36)?
- I design a frame with a taper (docked cross-section). STEEL EC3 classifies the taper in Cross-Section Class 3. Accordingly, the elastic resistances are taken into account, which is very unfavorable. According to the standard, the taper should be categorized in Class 1, and thus the plastic reserve should also be usable.