FAQ 004325 EN

Helpful Questions & Answers

  • Frequently Asked Questions (FAQs)

I design a combined structure made of timber materials with different creeping parameters. How can I perform the serviceability limit state design according to EN 1995‑1‑1?

Answer

In RFEM and RSTAB, the simplified design from [1], Chapter 2.2.3, have been implemented for the automatic load combinations. This means that, strictly speaking, the structures concerning the final deformation may only be analyzed, in which the materials with identical creep behavior occur since the creep deformations are considered in a simplified way on the load side. If the structure is a combined structure made of timber with different creep behavior or in combination with steel, the final deformations must be determined according to [2] Amendment to 2.2.3 as follows:

"(4) If the structure consists of members or components having different creep behaviour, the long-term deformation due to the quasi-permanent combination of actions should be calculated using final mean values of the appropriate moduli of elasticity, shear moduli and slip moduli, according to 2.3.2.2(1). The final deformation ufin is then calculated by the superposition of the instantaneous deformation due to the difference of the characteristic and quasi-permanent combinations of actions with the long-term deformation."

However, this requires the superposition of the results from different load combinations, which cannot be implemented automatically in RFEM and RSTAB. If the different creep behavior should be taken into account, it is necessary to create the load combinations manually, and reduce the stiffness according to the creep coefficient. The procedure is described on an example of a timber-concrete composite floor presented on the Info Day 2017. Below this FAQ, you can find the link for this video.

Keywords

Creep coefficient Deformation coefficient Creep ratio Long-term deformations Final deformation

Reference

[1]   Eurocode 5: Design of timber structures - Part 1-1: General - Common rules and rules for buildings; EN 1995-1-1:2010-12
[2]   Eurocode 5: Design of timber structures - Part 1-1: General - Common rules and rules for buildings; EN 1995-1-1:2004/A2:2014

Links

Write Comment...

Write Comment...

  • Views 405x
  • Updated 5 April 2021

Contact us

Contact Dlubal

Did you find your question?
If not, contact us via our free e-mail, chat, or forum support, or send us your question via the online form.

+49 9673 9203 0

info@dlubal.com

Online Training | English

RFEM | Structural dynamics and earthquake design according to EC 8

Online Training 11 August 2021 8:30 AM - 12:30 PM CEST

Online-Schulungen | English

RFEM for Students | USA

Online Training 11 August 2021 1:00 PM - 4:00 PM EDT

Online Training | English

Eurocode 3 | Steel structures according to DIN EN 1993-1-1

Online Training 25 August 2021 8:30 AM - 12:30 PM CEST

Online Training | English

Eurocode 5 | Timber structures according to DIN EN 1995-1-1

Online Training 23 September 2021 8:30 AM - 12:30 PM CEST

Effective BIM Workflows Between RSTAB & RFEM and IDEA StatiCa

Effective BIM Workflows Between RSTAB & RFEM and IDEA StatiCa

Webinar 5 August 2021 11:00 AM - 12:00 PM CEST

Glass Design with Dlubal Software

Glass Design with Dlubal Software

Webinar 8 June 2021 2:00 PM - 2:45 PM CEST

Blast Time History Analysis in RFEM

Blast Time History Analysis in RFEM

Webinar 13 May 2021 2:00 PM - 3:00 PM EDT

Timber Structures | Part 2: Design

Timber Beam and Surface Structures | Part 2: Design

Webinar 11 May 2021 2:00 PM - 3:00 PM CEST

Plate and Shell Buckling Utilizing Dlubal Software

Plate and Shell Buckling Utilizing Dlubal Software

Webinar 30 March 2021 2:00 PM - 2:45 PM CEST

CSA S16: 19 Steel design in RFEM

CSA S16:19 Steel Design in RFEM

Webinar 10 March 2021 2:00 PM - 3:00 PM EDT

The Most Common User Errors With RFEM and RSTAB

The Most Common User Errors With RFEM and RSTAB

Webinar 4 February 2021 2:00 PM - 3:00 PM BST

Member design according to ADM 2020 in RFEM

ADM 2020 Member Design in RFEM

Webinar 19 January 2021 2:00 PM - 3:00 PM EDT

Dlubal Info Day

Dlubal Info Day Online | 15 December 2020

Webinar 15 December 2020 9:00 AM - 4:00 PM BST

Stability Design in Steel Construction with RFEM and RSTAB

Stability Design in Steel Construction with RFEM and RSTAB

Webinar 1 December 2020 2:00 PM - 2:45 PM BST

FEM - Troubleshooting and Optimization in RFEM

FEA Troubleshooting and Optimization in RFEM

Webinar 11 November 2020 2:00 PM - 3:00 PM EDT

Soil-Structure Interaction in RFEM

Soil-Structure Interaction in RFEM

Webinar 27 October 2020 2:00 PM - 2:45 PM BST

NBC 2015 Modal Response Spectrum Analysis in RFEM

Webinar 30 September 2020 2:00 PM - 3:00 PM EDT

Documenting Results in the RFEM Printout Report

Documenting Results in the RFEM Printout Report

Webinar 25 August 2020 2:00 PM - 2:45 PM CEST

ACI 318-19 Concrete Design in RFEM

Webinar 20 August 2020 2:00 PM - 3:00 PM EDT

}
RFEM
RFEM

Main Program

Structural engineering software for finite element analysis (FEA) of planar and spatial structural systems consisting of plates, walls, shells, members (beams), solids and contact elements

Price of First License
3,540.00 USD
RSTAB
Structural Frame Analysis Software RSTAB

Main Program

The structural engineering software for design of frame, beam and truss structures, performing linear and nonlinear calculations of internal forces, deformations, and support reactions

Price of First License
2,550.00 USD