# FAQ 004398 EN

## How does the calculation of the moments of inertia differ when the cross-section consists of several unconnected or connected partial cross-sections?

If the cross-section consists of several unconnected partial sections, the sum of the moments of inertia is calculated without the parallel axis theorem components. The cross-section shown in Figure 01 consists of two angle sections that are not connected to each other.

The individual angle sections have the following moments of inertia:

Iy,1,2 = 180.39 cm4 (referred to the centroidal axes y, z)

Iz,1,2 = 65.05 cm4 (referred to the centroidal axes y, z)

The moments of inertia of the entire cross-section result in:

Iy,1+2 = 2 ⋅ Iy,1,2 = 2 ⋅ 180.39 = 360.78 cm4 (referred to the centroidal axes y, z)

Iz,1+2 = 2 ⋅ Iz,1,2 = 2 ⋅ 65.05 = 130.11 cm4 (referred to the centroidal axes y, z)

If the cross-section consists of several connected partial sections, the sum of the moments of inertia is calculated with the parallel axis theorem components. The cross-section shown in Figure 02 consists of two connected angle sections.

The individual angle sections have the following cross-section properties:

A1,2 = 16.25 cm²

yS,0,1,2 = ±2.30 cm (referred to the zero point)

zS,0,1,2 = 3.07 cm (referred to the zero point)

Iy,1,2 = 180.39 cm4 (referred to the centroid axes y, z)

Iz,1,2 = 65.05 cm4 (referred to the centroid axes y, z)

The cross-section properties of the entire cross-section result in:

yS,0,1+2 = 0.00 cm (referred to the zero point)

zS,0,1+2 = 3.07 cm (referred to the zero point)

Iy,1+2 = 2 ⋅ Iy,1,2 + 2 ⋅ A1,2 ⋅ (zS,0,1,2 - zS,0,1+2

Iy,1+2 = 2 ⋅ 180.39 + 2 ⋅ 16.25 ⋅ (3.07 - 3.07)² = 360.78 cm4 (referred to the centroidal axes y, z)

Iz,1+2 = 2 ⋅ Iz,1,2 + 2 ⋅ A1,2 ⋅ (yS,0,1,2 - yS,0,1+2

Iz,1+2 = 2 ⋅ 65.05 + 2 ⋅ 16.25 ⋅ (2.30 - 0.00)² = 301.46 cm4 (referred to the centroidal axes y, z)

#### Keywords

Write Comment...

Write Comment...

• Views 682x
• Updated 5 April 2021

If not, contact us via our free e-mail, chat, or forum support, or send us your question via the online form.

Blast Time History Analysis in RFEM

Webinar 13 May 2021 2:00 PM - 3:00 PM EDT

RFEM for Students | Part 3

Online Training 15 June 2021 2:00 PM - 4:30 PM CEST

Plate and Shell Buckling Utilizing Dlubal Software

Webinar 30 March 2021 2:00 PM - 2:45 PM CEST

Webinar 10 March 2021 2:00 PM - 3:00 PM EDT

Webinar 19 January 2021 2:00 PM - 3:00 PM EDT

Dlubal Info Day Online | 15 December 2020

Webinar 15 December 2020 9:00 AM - 4:00 PM BST

Webinar 1 December 2020 2:00 PM - 2:45 PM BST

Documenting Results in the RFEM Printout Report

Webinar 25 August 2020 2:00 PM - 2:45 PM CEST

Programmable COM Interface for RFEM/RSTAB

Webinar 12 May 2020 3:00 PM - 3:45 PM CEST

Designing Cold-Formed Steel Sections According to Eurocode 3

Webinar 30 April 2020 3:00 PM - 3:45 PM CEST

Membrane Structures with Wind Loads From CFD Wind Simulation

Webinar 24 March 2020 3:00 PM - 4:15 PM BST

Nonlinear Time History Analysis in RFEM

Webinar 8 May 2018 3:00 PM - 4:00 PM EDT

Length 1:03 min

Length 0:41 min

Length 0:39 min

Length 1:06 min

Length 0:40 min

Length 1:10 min

Length 3:03:33 min

Length 1:19 min

Length 9:17 min

Length 0:44 min

Length 0:44 min

Length 0:45 min

Length 38:53 min

Length 0:51 min

Length 0:59 min

Length 0:36 min

Length 0:30 min

Length 0:54 min