Loads on Silo Hopper According to EN 1991-4

Technical Article

This article was translated by Google Translator View original text

This article describes the actions on silos according to DIN EN 1991-4. Using the example of a free-standing cylindrical silo with a conical funnel for cement, the filling loads on the hopper are calculated.

System and structural components

The system is shown in Figure 1.

[1] , 6.1.1 (2) taking into account the inclination of the funnel walls according to the following classification:

  • A plane floor is assumed if the inclination angle of the floor relative to the horizontal α is less than 5 °.
  • You can assume a funnel with a slight inclination if the two other cases mentioned above are not applicable.
  • A steep funnel is given if the following criterion is fulfilled:
    $$\tan\;\mathrm\beta\;<\;\frac{1\;-\;\mathrm K}{2\;\cdot\;{\mathrm\mu}_\mathrm h}\;(6.1)$$

$$\tan\;39,8^\circ\;=\;0,83\;>\;\frac{1\;-\;0,450}{2\;\cdot\;0,458}\;=\;0,60$$

The funnel is considered as flat.

Fill loads

Characteristic depth z o according to the method according to Janssen
$${\mathrm z}_\mathrm o\;=\;\frac1{\mathrm K\;\cdot\;\mathrm\mu}\;\cdot\;\frac{\mathrm A}{\mathrm U}\;(5.75)$$
$${\mathrm z}_\mathrm o\;=\;\frac1{0,450\;\cdot\;0,458}\;\cdot\;\frac{19,63}{15,71}\;=\;6,07\;\mathrm m$$

Vertical distance h o
The vertical distance h o between the equivalent material surface and the highest contact location of the stored bulk material with the wall can be assumed for a symmetrically filled circular silo with:
$${\mathrm h}_\mathrm o\;=\;\frac{{\mathrm d}_\mathrm c}6\;\cdot\;\tan\;{\mathrm\phi}_\mathrm r\;(5.78)$$
$${\mathrm h}_\mathrm o\;=\;\frac{5,00}6\;\cdot\;\tan\;36,00^\circ\;=0,61\;\mathrm m$$

Parameter n
$$\mathrm n\;=\;-(1\;+\;\tan\;{\mathrm\phi}_\mathrm r)\;\cdot\;(\frac{1\;-\;{\mathrm h}_\mathrm o}{{\mathrm z}_\mathrm o})\;(5.76)$$
$$\mathrm n\;=\;-(1\;+\;\tan\;36,00^\circ)\;\cdot\;(\frac{1\;-\;0,61}{6,07})\;=\;-1,55$$

Coordinate z
z = h c = 8.00 m 6.1.2 (2)

Vertical load p vf
$${\mathrm p}_\mathrm{vf}\;=\;\mathrm\gamma\;\cdot\;({\mathrm h}_\mathrm o\;-\;\frac1{\mathrm n\;+\;1}\;\cdot\;({\mathrm z}_\mathrm o\;-\;{\mathrm h}_\mathrm o\;-\;\frac{(\mathrm z\;+\;{\mathrm z}_\mathrm o\;-\;2\;\cdot\;{\mathrm h}_\mathrm o)^{\mathrm n+1}}{({\mathrm z}_\mathrm o\;-\;{\mathrm h}_\mathrm o)^\mathrm n})\;(5.79)$$
$${\mathrm p}_\mathrm{vf}\;=\;16,00\;\cdot\;(0,61\;-\;\frac1{-1,55\;+\;1}\;\cdot\;(6,07\;-\;0,61\;-\;\frac{(8,00\;+\;6,07\;-\;2\;\cdot\;0,61)^{-1,55+1}}{(6,07\;-\;0,61)^{-1,55}})\;=\;69,27\;\mathrm{kN}/\mathrm m²$$

Soil load augmentation factor C b
C b = 1.0 (6.3)
The soil load increase factor C b has been applied for silos of requirement class 2 on the condition that the supported bulk material has no tendency to dynamic behavior.

Mean vertical loads at the funnel transition
p vtf = C b · p vf (6.2)
p vtf = 1.0 · 69.27 = 69.27 kN / m²

Mobilized Friction
In a hopper that is inclined at a slight angle, the wall friction is not fully mobilized. The mobilized or effective coefficient of wall friction should be applied as:
$${\mathrm\mu}_\mathrm{heff}\;=\;\frac{1\;-\;\mathrm K}{2\;\cdot\;\tan\;\mathrm\beta}\;(6.26)$$
$${\mathrm\mu}_\mathrm{heff}\;=\;\frac{1\;-\;0,450}{2\;\cdot\;\tan\;39,8^\circ}\;=\;0,33$$

Parameter n
n = S · (1-b) · μ heff · cot β (6.28)
S = 2 (6.9)
n = 2 · (1 - 0.2) · 0.33 · cot 39.8 ° = 0.634

Parameter F f
$${\mathrm F}_\mathrm f\;=\;1\;-\;\frac{\mathrm b}{\displaystyle\frac{1\;+\;\tan\;\mathrm\beta}{{\mathrm\mu}_\mathrm{heff}}\;}\;(6.27)$$
$${\mathrm F}_\mathrm f\;=\;1\;-\;\frac{0,2}{\displaystyle\frac{1\;+\;\tan\;39,8^\circ}{0,33}\;}\;=\;0,943$$

Parameter n
n = S · (F f · μeffeff c + β) + 2 (6.8)
n = 2 * (0.943 x 0.33 x cot 39.8 ° + 0.943) - 2 = 0.634

Loads perpendicular to funnel walls
pnf (x) = Ffp (x) (6.29)
$${\mathrm p}_\mathrm{nf}(\mathrm x)\;=\;{\mathrm F}_\mathrm f\;\cdot\;(\mathrm\gamma\;\cdot\;\frac{{\mathrm h}_\mathrm h}{\mathrm n\;-\;1}\;\cdot\;(\frac{\mathrm x}{{\mathrm h}_\mathrm h}\;-\;(\frac{\mathrm x}{{\mathrm h}_\mathrm h})^\mathrm n)\;+\;{\mathrm p}_\mathrm{vft}\;\cdot\;(\frac{\mathrm x}{{\mathrm h}_\mathrm h})^\mathrm n$$
p nf (0.00) = 0.00 kN / m²
p nf (1.00) = 52.97 kN / m²
p nf (2.00) = 63.72 kN / m²
p nf (3.00) = 65.33 kN / m²

This load can be entered as a free variable load in RFEM. The load input can be seen in Figure 3.

References

[1] Eurocode 1: Actions on structures - Part 4: Actions on silos and liquid containers; EN 1991-4: 2010-12

Keywords

Silicone funnel Funnel Flatly inclined funnel Fill load Hopper load

Downloads

Links

Contact us

Contact to Dlubal

Do you have questions or need advice?
Contact our free e-mail, chat, or forum support or find various suggested solutions and useful tips on our FAQ page.

+49 9673 9203 0

info@dlubal.com

RFEM Main Program
RFEM 5.xx

Main Program

Structural engineering software for finite element analysis (FEA) of planar and spatial structural systems consisting of plates, walls, shells, members (beams), solids and contact elements

Price of First License
3,540.00 USD