990x
001767
2023-12-05

AISC 341-16 Wymiarowanie prętów zginających w RFEM 6

W rozszerzeniu Projektowanie konstrukcji stalowych dla programu RFEM 6 dostępne są trzy typy ram sprężystych (zwykłe, pośrednie i specjalne). Wyniki obliczeń sejsmicznych zgodnie z AISC 341-16 są podzielone na dwie sekcje: wymagania dotyczące prętów i połączeń.

Więcej szczegółów na temat danych wejściowych z konfiguracji sejsmicznej znajduje się w osobnym artykule, Kb | AISC 341 Obliczenia sejsmiczne w RFEM 6 .

Member Requirements

The following design checks for members that are part of the seismic force-resisting system (SFRS) are available in RFEM. The sections listed refer to Seismic Provisions AISC 341-16 [1].

  • Width-to-Thickness Limitations [Section D1.1]
  • Stability Bracing of Beams - Required Strength & Stiffness [Section D1.2a.1(b) for IMF and D1.2b for SMF]
  • Stability Bracing of Beams - Maximum Spacing [Section D1.2a.1(c) for IMF and D1.2b for SMF]
  • Stability Bracing of Beams at Hinge Locations - Required Strength [Section D1.2c.1(b)]
  • Column Required Strength [Section D1.4a]
  • Column Slenderness Ratio for Unbraced Connection [Section E3.4c.2b]

Width-to-Thickness Limitations for Ductility Requirements

Members in IMF are designated as moderately ductile members according to Section E2.5a. Members in SMF are designated as highly ductile members according to Section E3.5a.

Słup, półka

The column flange of SMF must satisfy the requirements of AISC Seismic Provisions Section D1.1 [1] for highly ductile members. This design check is shown as EQ 1200 in RFEM (Image 1).

Środnik słupa

The limiting width-to-thickness ratio for webs of highly ductile members is determined using the governing load case for axial load, as stipulated in Section D1.4a [1]. The governing load case is based on all load combinations, including gravity only CO, CO with standard seismic load, and CO with overstrength seismic load. This check is shown in EQ 1100 in RFEM (Image 2).

Similar to the columns, the width-to-thickness checks are also done for the beams.

Stability Bracing of Beams

The required strength and stiffness of the stability bracings are listed in the Stability Bracing by Member tab under “Seismic Requirements” (Image 3). These values can be compared to the calculated available strength and stiffness when designing the bracing members that frame into the beam. There are no design check details available (only references).

There are two different values listed for the required strengths. The first value, Pbr, is applicable for the stability bracings that are located outside the plastic hinge location. Pbr is defined in Equation A-6-7 of Appendix 6 of AISC 360-16 [3]:

The second, larger value, Pr, is specifically for the stability bracings at the plastic hinge location. It is defined in Equation D1-4 of AISC 341-16 [1]:

The required stiffness, βbr, is defined in Equation A-6-8 of Appendix 6:

The maximum spacing of the stability bracing must satisfy the requirements of AISC 341-16 Section D1.2a.1(c) for IMF and Section D1.2b for SMF.

The design check for the maximum spacing is presented together with the other member requirements under “Design Ratios of Members”. The design check detail is shown in EQ 2100 (Image 4). The braced length, Lb, is the specified effective length for lateral-torsional buckling (LTB).

Column Required Strength

All columns that are part of the seismic force-resisting system (SFRS) are required to be designed with the overstrength loads. In many cases, the amplified axial force does not need to be combined with the concurrent bending moments. The option to neglect all bending moments, shear, and torsion in columns for overstrength limit state is activated by default. This option can be deactivated in the Seismic Configuration.

For standard load combinations without overstrength from seismic load effect, the combined loading is checked according to AISC 360-16, Chapter H.

For load combinations with overstrength seismic load, Chapters F and H are not checked when the option to neglect all bending moments, shear, and torsion in columns for overstrength limit state is activated.
In Example 4.3.2 of the seismic manual [2], the controlling case from both load combinations, standard and overstrength, needs to be considered.

Bending moments resulting from a load applied between points of lateral support can contribute to column buckling. Therefore, they are required to be considered concurrently with the axial loads by deactivating the option to neglect the moments.

Column Slenderness Ratio for Unbraced Connection

For columns in SMF with no transverse member bracing at the connection, the potential for out-of-plane buckling at the connection shall be minimized by limiting the slenderness ratio L/r to be equal to or less than 60, according to Section E3.4c.2b [1]. Unbraced connections occur in special cases, such as in a two-story frame without an intermediate floor.

In all other cases, the option to meet this requirement can be deactivated in the Seismic Configuration.

The connection requirements are covered in the article Kb | AISC 341-16 Wytrzymałość połączenia ramy na zginanie w RFEM 6 .


Autor

Firma Cisca jest odpowiedzialna za wsparcie techniczne klienta i ciągły rozwój programu na rynek północnoamerykański.

Odnośniki
Odniesienia
  1. Amerykańskiego Instytutu Konstrukcji Stalowych. (2016). AISC 341-16, Seismic Provisions for Structural Steel Buildings. Chicago: AISC.
  2. AISC. (2018). Poradnik obliczeń sejsmicznych , (wyd. 3). Amerykańskiego Instytutu Konstrukcji Stalowych, Chicago.
  3. Amerykańskiego Instytutu Konstrukcji Stalowych. (2016) Specyfikacja dla konstrukcji stalowych , ANSI/AISC 360-16. Chicago: AISC.


;