FAQ 004281 | Does the RF‑LAMINATE program consider the shear correction factor for cross-laminated timber plates?

Video

First Steps with RFEM

First steps

We provide hints and tips to help you get started with the RFEM program.

12 December 2019

001094

Bastian Kuhn

Please accept Marketing Cookies to watch this video.

Question

Does the RF‑LAMINATE program consider the shear correction factor for cross-laminated timber plates?

Answer

The shear correction factor is considered in the RF‑LAMINATE add-on module by using the following equation.


$k_{z}=\frac{{\displaystyle\sum_i}G_{xz,i}A_i}{\left(\int_{-h/2}^{h/2}E_x(z)z^2\operatorname dz\right)^2}\int_{-h/2}^{h/2}\frac{\left(\int_z^{h/2}E_x(z)zd\overline z\right)^2}{G_{xz}(z)}\operatorname dz$

with $\int_{-h/2}^{h/2}E_x(z)z^2\operatorname dz=EI_{,net}$

The calculation of shear stiffness can be found in the English version of the RF-LAMINATE manual, page 15 ff.

For a plate with the thickness of 10 cm in Figure 01, the calculation of the shear correction factor is shown. The equations used here are only valid for simplified symmetrical plate structures!

Layerz_minz_maxE_x(z)(N/mm²)G_xz(z)(N/mm²)
1-50-3011,000690
2-30-1030050
3-101011,000690
4103030050
5305011,000690

$\sum_iG_{xz,i}A_i=3\times0.02\times690+2\times0.02\times50=43.4N$

$EI_{,net}=\sum_{i=1}^nE_{i;x}\frac{\mbox{$z$}_{i,max}^3-\mbox{$z$}_{i,min}^3}3$

$=11,000\left(\frac{-30^3}3+\frac{50^3}3\right)+300\left(\frac{-10^3}3+\frac{30^3}3\right)$

$+11,000\left(\frac{10^3}3+\frac{10^3}3\right)+300\left(\frac{30^3}3-\frac{10^3}3\right)+11,000\left(\frac{50^3}3-\frac{30^3}3\right)$

$=731.2\times10^6 Nmm$

$\int_{-h/2}^{h/2}\frac{\left(\int_z^{h/2}E_x(z)zd\overline z\right)^2}{G_{xz}(z)}\operatorname dz=\sum_{i=1}^n\frac1{G_{i;xz}}\left(χ_i^2(z_{i,max}-z_{i,min})\;χ_iE_{i,x}\frac{z_{i,max}^3-z_{i,min}^3}3+E_{i,x}^2\frac{z_{i,max}^5-z_{i,min}^5}{20}\right)$

$χ_i=E_{i;x}\frac{z_{i,max}^2}2+\sum_{k=i+1}^nE_{k;x}\frac{z_{k,max}^2-z_{k,min}^2}2$


χ113.75 106
χ2
8.935 106
χ3
9.47 106
χ4
8.935 106
χ5
13.75 106


$\sum_{i=1}^n\frac1{G_{i;yz}}\left(χ_i^2(z_{i,max}-z_{i,min})-χ_iE_{i,y}\frac{z_{i,max}^3-z_{i,min}^3}3+{E^2}_{i,y}\frac{z_{i,max}^5-z_{i,min}^5}{20}\right)=$


8.4642 1011
3.147 1013
2.5 1012
3.147 1013
8.4642 1011

Total 6.7133 x 1013

$k_z=\frac{43.4}{{(731.2e^6)}^2}6.713284\;e^{13}=5.449\;e^{-3}$

$D_{44}=\frac{{\displaystyle\sum_i}G_{xz,i}A_i}{k_z}=\frac{43.4}{5.449\;e^{-3}}=7,964.7 N/mm$

This corresponds to the resulting value in RF‑LAMINATE (Figure 02).

Keywords

Dlubal FAQ Shear correction Factor Shear Frequently Asked Question FAQ about Dlubal Question and Answer about Dlubal

Links

Write Comment...

Write Comment...

  • Views 46x
  • Updated 19 November 2020

Contact us

Do you have any questions about our products or need advice on selecting the products needed for your projects?
Contact us via our free e-mail, chat, or forum support or find various suggested solutions and useful tips on our FAQ page.

+49 9673 9203 0

info@dlubal.com