Traitement des singularités lors de la détermination de charges dans RF-PUNCH Pro

Article technique

Le module additionnel RF-PUNCH Pro permet de vérifier la résistance au poinçonnement des extrémités et des coins de parois. La charge de poinçonnement constitue la base du calcul. Elle est déterminée automatiquement à partir des efforts internes de la surface calculée dans RFEM. Les efforts internes ainsi obtenus peuvent être impactés par des effets de singularités, qui peuvent également avoir une influence négative sur la charge de poinçonnement déterminée au niveau d'un coin ou d'une extrémité de paroi. Cet article décrit les possibilités d'optimisation pour limiter cette influence défavorable.

Détermination de la charge de poinçonnement sur les coins et extrémités des parois

Contrairement à celle d'un poteau (ou d'un appui nodal), la charge de poinçonnement des extrémités et des coins de paroi ne peut pas être directement dérivée de l'effort normal du poteau (ou de la force d'appui). Dans RF-PUNCH Pro, l'effort tranchant maximal vmax,b est analysé dans la dalle concernée et la charge de poinçonnement est déterminée à partir de l'effort tranchant dans le périmètre critique.

Cet article technique de notre base de connaissance traite également de ce sujet et décrit les options disponibles dans la fenêtre « 1.5 Nœuds de poinçonnement » ainsi que la procédure générale de détermination de charge.

Efforts internes de la surface dans RFEM

En premier lieu, il convient de noter que la charge de poinçonnement VEd n'est pas déterminée à partir de la force d'un appui linéique, de l'effort normal ou de membrane d'une paroi. Les efforts de cisaillement sont évalués dans la dalle dont on vérifie la résistance au poinçonnement.

Figure 01 - Distribution de l'effort interne principal v_max,b dans une dalle

Pour ce faire, on utilise les efforts internes principaux vmax,b obtenus à l'aide de RFEM et disponibles dans les résultats des cas de charge, des combinaisons de charges ou des combinaisons de résultats. Les efforts internes principaux vmax, b sont définis dans le Chapitre 8.16 du manuel de RFEM [1]. On obtient le résultat suivant :

${\mathrm v}_{\max,\mathrm b}\;=\;\sqrt{\mathrm v_{\mathrm x}^2\;+\;\mathrm v_{\mathrm y}^2}$

On peut également consulter le chapitre correspondant du manuel en ligne de RFEM 5.

Influence des singularités

La présence d'une éventuelle singularité au niveau d'un nœud de poinçonnement à vérifier ou d'une valeur extrême dans la distribution de l'effort tranchant a également une influence sur la charge de poinçonnement VEd déterminée dans le périmètre critique.

Un exemple de poinçonnement à l'extrémité d'une paroi sur un radier est analysé ci-dessous. RF-PUNCH Pro utilise l'effort interne principal vmax,b dans le radier (voir la Figure 02).

Figure 02 - Répartition des efforts internes principaux aux extrémités du radier

Le maillage EF généré est cependant trop grossier et le périmètre critique dépasse les valeurs extrêmes de l'effort tranchant vmax,b.

Figure 03 - Distribution de l'effort tranchant dans le périmètre critique avec un maillage EF insuffisant

Le module détecte que le maillage EF est insuffisant et l'avertissement n°56 s'affiche dans la fenêtre 2.1.  

Figure 04 - Fenêtre 2.1 de RF-PUNCH Pro et message n°56

Un raffinement de maillage EF permet d'affiner le maillage dans la zone du point de poinçonnement et l'avertissement n°56 disparaît alors. Ce raffinement du maillage EF peut cependant entraîner une augmentation de la valeur extrême de l'effort tranchant dans le périmètre critique. Par conséquent, la valeur de la charge de poinçonnement VEd déterminée est également influencée de manière négative et s'en trouve augmentée.

Si le raffinement de maillage EF a un impact négatif sur la valeur maximale de l'effort tranchant dans le périmètre critique, il est souvent recommandé de contrôler la modélisation de la structure à vérifier. L'ouvrage [2] aborde diverses « sources d'erreur » qui influencent considérablement la distribution des efforts internes dans les surfaces et donc la charge de poinçonnement VEd déterminée dans RF-PUNCH Pro.

Optimisation de la géométrie du modèle

La distribution des efforts tranchants dans le radier et dans le périmètre critique peut être obtenue dans cet exemple à l'aide d'une représentation plus « réaliste » du radier. Dans une première version du modèle, les lignes de contour du radier ont été placées sur les axes du système des parois. Dans une autre version, le bord du radier n'est pas placé sur ces axes, mais il est entré en fonction de son bord « réel ». Il est ainsi possible d'influencer considérablement la distribution des efforts tranchants dans le périmètre critique.

La Figure 05 montre les différences entre ces deux versions.

Figure 05 - Comparaison de l'effort tranchant dans le périmètre critique selon le type de modélisation

Avec la seconde, la distance réaliste au bord extérieur du radier est automatiquement détectée dans RF-PUNCH Pro et la longueur du périmètre critique est ainsi appliquée de manière plus favorable.

Optimisation des appuis du modèle

Une autre possibilité pour influencer favorablement la distribution des efforts tranchants consiste à considérer la fondation élastique de surface appliquée de manière différenciée.

Dans RFEM, un ressort constant est généralement appliqué en tant que fondation élastique sur l'ensemble du radier. Cependant, RFEM offre d'autres possibilités pour représenter ce type de fondations de manière économique.

On peut par exemple appliquer des ressorts au niveau des bords ou des coins afin d'influencer favorablement la distribution des efforts tranchants dans le radier. Un autre article technique de notre base de connaissance explique les principes théoriques de la méthode du module d'élasticité (modifiée).

La Figure 06 montre les efforts tranchants dans le périmètre sans ressorts sur les bords (en haut) et avec des ressorts (en bas) appliqués sur le modèle avec dépassement du bord du radier.

Figure 06 - Comparaison de modèles sans (haut) et avec (bas) ressorts sur les bords du radier

Plutôt que de recourir à la solution du modèle avec des ressorts, le module additionnel RF-SOILIN peut être utilisé pour obtenir une approche plus réaliste des fondations de surface et donc un effet positif sur la distribution des efforts tranchants dans le périmètre critique.

Paramètres de RF-PUNCH Pro

La charge de poinçonnement dans RF-PUNCH Pro est définie par défaut sur « Effort tranchant non lissé sur le périmètre critique ». Si les optimisations suggérées plus haut ont été appliquées, cette option est normalement disponible dans la fenêtre 1.5 du module. Si l'on obtient malgré tout une valeur maximale de l'effort tranchant dans le périmètre critique, l'option « Effort tranchant lissé sur le périmètre critique » reste également accessible.

Figure 07 - Fenêtre 1.5 de RF-PUNCH Pro avec paramètres de détermination de la charge de poinçonnement

Lors de l'application de l'effort tranchant pondéré sur le périmètre critique, il est également nécessaire de considérer l'influence du facteur d'incrément de charge β, qui peut être déterminé à l'aide du modèle de secteur, par exemple. Un autre article technique de la base de connaissance Dlubal peut également être consulté à ce sujet.

Résumé

La charge de poinçonnement efficace doit toujours être vérifiée en cas de taux de travail très élevés lors de la vérification de la résistance au poinçonnement aux extrémités ou aux coins d'une paroi.

Il est alors nécessaire de prêter attention à la distribution des efforts tranchants dans le périmètre critique et de vérifier si des ajustements ou des optimisations du modèle peuvent aboutir à une distribution plus favorable de l'effort tranchant vmax,b dans le radier.

Cependant, les optimisations de modélisation et des appuis ne constituent pas une solution universellement applicable et doivent toujours être utilisées en fonction de la situation considérée, puis appliquées sous une forme adaptée à chaque modèle.

Mots-Clés

Poinçonner Poinçonnement Charge de poinçonnement Charge Singularité Région moyenne Éléments finis Modèle de secteur Facteur d'incrément de charge

Littérature

[1]   Manuel RFEM. Tiefenbach : Dlubal Software, février 2016.
[2]   Barth, C., & Rustler, W. (2013). Finite Elemente in der Baustatik-Praxis (2nd ed.). Berlin: Beuth.

Téléchargements

Liens

Contactez-nous

Des questions sur nos produits ? Besoin de conseils sur un projet ?
Contactez notre assistance technique gratuite par e-mail, via le chat Dlubal ou sur notre forum international. N'hésitez pas à consulter les nombreuses solutions et astuces de notre FAQ.

+33 1 78 42 91 61

info@dlubal.fr

RFEM Logiciel principal
RFEM 5.xx

Programme de base

Logiciel de calcul de structures aux éléments finis (MEF) pour les structures 2D et 3D composées de plaques, voiles, coques, barres (poutres), solides et éléments d'assemblage

Prix de la première licence
3 540,00 USD
RFEM Structures en béton
RF-PUNCH Pro 5.xx

Module additionnel

Vérification du poinçonnement des dalles et des fondations au niveau des appuis nodaux et linéiques

Prix de la première licence
760,00 USD