27x
004769
0001-01-01
2 Theoretical Background

2.7.10.7 Calculation of distribution coefficient

Calculation of distribution coefficient

The maximum stress in the uncracked state is:

σmax,ϕ1 = nϕ1 + nsh,ϕ1Aϕ1,l + mϕ1 - nϕ1 χl,ϕ1 - h2 + msh,l,ϕ1Iϕ1,l · h -  χl,ϕ1 =               = -100 · 103 + 101.5 · 1030.206 + 30 · 103 - -100 · 103 0.101 - 0.22 + 4.778 ·1036.816 · 10-4 · 0.2 - 0.1               = 5.1 Mpa 

We assume a long-term loading:

βφ10.5 

Taking Tension Stiffening into account, the distribution coefficient is calculated according to the following equation:

    • for σmax,φ1 > fctm:

ζd = 1 - βϕ1 · fctmσmax,ϕ12

    • for σmax,φ1 ≤ fctm:

ζsh,c,ϕ1 = 0  

In the example, the maximum tension stress in the concrete is larger than the concrete tensile strength.

σmax,ϕ1 > fctm 

5.1 > 2.9 

Thus, the distribution coefficient is:

ζϕ1 = 1- βϕ1 · fctmσmax,ϕ12 = 1 - 0.5 · 2.95.12 = 0.835 

Image 2.123 Calculation of distribution coefficient (damage parameter)
Parent Chapter