Why is the crack moment Mcr smaller for a biaxial bending than for a uniaxial bending?

Answer

The crack moment of a concrete cross-section is calculated from the mean tensile strength of the concrete and from the ideal section modulus. The crack moment describes the internal force that occurs when the tension stress fctm is reached in the outermost fiber of the cross-section and crack formation occurs.

For uniaxial bending, it is possible to calculate the crack moment analytically. For biaxial bending, the introduction of a weighting factor k is helpful in order to determine from the components Mcr,y and Mcr,z Mcr.

Calculation for the attached example:

Bending moment My = 20 kNm
Bending moment Mz = 20 kNm

Ideal section modulus Wy = 3081 cm3
Ideal section modulus Wz = 3081 cm3

Mean tensile strength of concrete fctm = 0.290 kN/cm2

Member 1: Uniaxial bending My:

$\begin{array}{l}M_{cr\;}=f_{ctm}\times W_y\\M_{cr\;}=0,29\;\frac{kN}{cm^2}\times3081\;cm^3\\M_{cr\;}=893\;kNcm\;=\;8,9\;kNm\end{array}$

Member 2: Uniaxial bending Mz:

$\begin{array}{l}M_{cr\;}=f_{ctm}\times W_z\\M_{cr\;}=0,29\;\frac{kN}{cm^2}\times3081\;cm^3\\M_{cr\;}=893\;kNcm\;=\;8,9\;kNm\end{array}$

Member 3: Biaxial bending My and Mz:

$\begin{array}{l}M_{cr\;}=\sqrt{M_{cr,y}^2+M_{cr,z}^2}\\M_{cr,y\;}=k\times My\\k=\frac{f_{ctm}}{\sigma_M}\\\sigma_M=\frac{M_y}{W_y}+\frac{M_z}{W_z}=\\\end{array}$


Keywords

Crack moment Mean tensile strength of concrete

Contact us

Contact to Dlubal

Did you find your question?
If not, contact us via our free e-mail, chat, or forum support, or send us your question via the online form.

+49 9673 9203 0

info@dlubal.com

RFEM Main Program
RFEM 5.xx

Main Program

Structural engineering software for finite element analysis (FEA) of planar and spatial structural systems consisting of plates, walls, shells, members (beams), solids and contact elements

Price of First License
3,540.00 USD
RSTAB Main Program
RSTAB 8.xx

Main Program

The structural engineering software for design of frame, beam and truss structures, performing linear and nonlinear calculations of internal forces, deformations, and support reactions

Price of First License
2,550.00 USD