Punching Shear Design in RFEM 6

Technical Article on the Topic Structural Analysis Using Dlubal Software

  • Knowledge Base

Technical Article

The punching shear design, in line with EN 1992-1-1, should be performed for slabs with a concentrated load or reaction. The node where the design of punching shear resistance is performed (i.e., where there is a punching problem) is called a node of punching shear. The concentrated load at these nodes can be introduced by columns, concentrated force, or nodal supports. The end of the linear load introduction on slabs is also regarded as a concentrated load and therefore, the shear resistance at wall ends, wall corners, and ends or corners of line loads and line supports should be controlled as well.

Control Perimeter

The punching shear check is performed in the basic control perimeter, where a check is made as to whether the acting shear force vEd exceeds the resistance vRd. According to Chapter 6.4.2 of EC 2 [1], the control perimeter for slabs is at a distance of twice the effective depth (d) of the slab from the point of the load application. The column dimensions as well as the slab openings affect the control perimeter geometry and should be considered up to the distance of 6 d of the load surface. It is important that you define all openings beforehand (that is, during the FEM analysis), so that the program can automatically recognize them and take them into account for the punching design, as shown in Image 1.

Punching Design Parameters in RFEM 6

Assuming that the Concrete Design add-on has already been activated, the punching shear design in RFEM 6 can be initialized by checking the Punching Design box in the design properties of the punching node (Image 2). It is possible to select all the nodes where a punching problem has occurred and activate the punching design simultaneously for all of them. Alternatively, the nodes with punching can be selected for design in the Input Data of the Concrete Design table (Image 3).

The punching design parameters for the selected nodes can be defined in the Ultimate Configuration for concrete design (Image 4). Thus, the punching load, the load increment factor β for considering the asymmetrical distribution of shear force in the control perimeter, and the minimum spacing of reinforcement can be set in the Punching tab of the ultimate configuration (Image 5).

The punching load for walls is the shear force (smoothed or unsmoothed) over the critical perimeter, whereas for columns, the punching load can be either the shear force (smoothed or unsmoothed) over the critical perimeter or a single force from column, load, or nodal support.

The load increment factor according to EN 1992-1-1 [1] can be estimated by considering full-plastic shear distribution shown in Image 6, or by means of constant factors. It can be also determined by a sector model or defined by the user.

Punching Shear Design in RFEM 6

Assuming that the punching design parameters have been defined, the concrete design (including punching) can be performed. First, the design can be done by taking into account only the longitudinal reinforcement, which has already been provided to the surface (Image 7). Once the concrete design is performed considering only this reinforcement, the design ratios in terms of punching shear resistance for all the nodes of interest are available both graphically and in the tables (Image 8).

The design ratios on the punching nodes are, in fact, a comparison between the punching shear resistance without shear reinforcement vRd,c determined according to 6.4.4 (1) [1], and the applied maximum shear stress vEd calculated in line with Chapter 6.4.3 (3), Eq. (38). These equations, as well as the whole calculation procedure, can be found in the Design Check Details shown in Image 9.

The punching shear without additional punching reinforcement is fulfilled if vEd ≤ vRd,c; otherwise, additional reinforcement has to be defined. In the latter case, it is possible to define additional longitudinal reinforcement at the tension side of the slab. For the slab in this example, this will be done by defining additional longitudinal reinforcement at the top side, as shown in Image 10. The defined reinforcement can be assigned to one node and then it can easily be copied to all punching nodes using the common "copy" function (Image 11). The reinforcement assigned in this way will then be considered automatically for the determination of the shear capacity.

Once again, the results are available both graphically and in the Concrete Design table. If the punching shear design without additional punching reinforcement is still not fulfilled, the user can increase the longitudinal reinforcement by applying the maximum allowable longitudinal reinforcement ratio ρ. Nevertheless, if the punching shear design is impossible without punching reinforcement (vRd,c≤ vEd), the maximum punching shear resistance vRd,max is calculated and the design check is automatically performed.

The amount of required reinforcement in terms of punching can be displayed via the Results tab of the Navigator (Image 12). If the user is also interested in the punching load used for the calculation, it can be displayed via the Results tab of the Navigator as shown in Image 13.

Final Remarks

Punching shear design in RFEM 6 is included in the Concrete Design add-on and it can be initialized by checking the Punching Design box in the Edit Window of the punching nodes. The activation of the design properties will allow the punching design parameters such as the punching load, the load increment factor β, and the minimum spacing of reinforcement to be defined in the Ultimate Configuration for concrete design.

The concrete design can be performed on the basis of the longitudinal reinforcement provided for the other design types. If the punching shear design without additional punching reinforcement is not fulfilled (vRd,c ≤ vEd), additional longitudinal reinforcement can be assigned on the tension side of the slab. In this way, the maximum punching shear resistance vRd,max is calculated and the design check is automatically performed.

Author

Irena Kirova, M.Sc.

Irena Kirova, M.Sc.

Marketing & Customer Support

Ms. Kirova is responsible for creating technical articles and provides technical support to the Dlubal customers.

Keywords

Punching Punching Shear Design Slab

Reference

[1]   Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings; EN 1992-1-1:2011-01

Links

Write Comment...

Write Comment...

  • Views 1638x
  • Updated 12 May 2022

Contact Us

Contact Dlubal

Do you have any further questions or need advice? Contact us via phone, email, chat or forum or find suggested solutions and useful tips on our FAQ page, available 24/7.

+49 9673 9203-0

[email protected]

Analysis of Steel Joints \n Using FE Model in RFEM 6

Analysis of Steel Joints Using FE Model in RFEM 6

Webinar 29 September 2022 2:00 PM - 3:00 PM CEST

Online Training | English

RFEM 6 | Basics

Online Training 7 October 2022 9:00 AM - 1:00 PM CEST

Seismic Design According to EC 8 in RFEM 6 and RSTAB 9

Seismic Design According to Eurocode 8 in RFEM 6 and RSTAB 9

Webinar 11 October 2022 2:00 PM - 3:00 PM CEST

Online Training | English

RFEM 6 | Students | Introduction to Member Design

Online Training 12 October 2022 4:00 PM - 7:00 PM CEST

Online Training | English

Eurocode 2 | Concrete Structures According to DIN EN 1992-1-1

Online Training 18 October 2022 9:00 AM - 1:00 PM CEST

Online Training | English

RSECTION | Students | Introduction to Strength of Materials

Online Training 19 October 2022 4:00 PM - 7:00 PM CEST

Online Training | English

RFEM 6 | Students | Introduction to FEM

Online Training 27 October 2022 4:00 PM - 7:00 PM CEST

Online Training | English

RFEM 6 | Students | Introduction to Steel Design

Online Training 10 November 2022 4:00 PM - 5:00 PM CET

Online Training | English

Eurocode 3 | Steel Structures According to DIN EN 1993-1-1

Online Training 17 November 2022 9:00 AM - 1:00 PM CET

Online Training | English

RFEM 6 | Dynamic Analysis and Seismic Design According to EC 8

Online Training 23 November 2022 9:00 AM - 1:00 PM CET

Online Training | English

RFEM 6 | Students | Introduction to Timber Design

Online Training 25 November 2022 4:00 PM - 5:00 PM CET

Online Training | English

Eurocode 5 | Timber Structures According to DIN EN 1995-1-1

Online Training 8 December 2022 9:00 AM - 1:00 PM CET

Online Training | English

RFEM 6 | Dynamic Analysis and Seismic Design According to EC 8

Online Training 21 September 2022 9:00 AM - 1:00 PM CEST

Rhino/Grasshopper Integration in RFEM 6

Rhino/Grasshopper Integration in RFEM 6

Webinar 20 September 2022 2:00 PM - 3:00 PM EDT

Design Aluminum Structures \n in RFEM 6 and RSTAB 9

Model and Design Aluminum Structures in RFEM 6 and RSTAB 9

Webinar 15 September 2022 2:00 PM - 3:00 PM CEST

Online Training | English

Eurocode 5 | Timber Structures According to DIN EN 1995-1-1

Online Training 15 September 2022 9:00 AM - 1:00 PM CEST

Consider Construction Stages \n in RFEM 6

Consider Construction Stages in RFEM 6

Webinar 8 September 2022 2:00 PM - 3:00 PM CEST

Online Training | English

Eurocode 3 | Steel Structures According to DIN EN 1993-1-1

Online Training 8 September 2022 9:00 AM - 1:00 PM CEST

RFEM 6
Hall with Arched Roof

Main Program

The structural analysis program RFEM 6 is the basis of a modular software system. The main program RFEM 6 is used to define structures, materials, and loads of planar and spatial structural systems consisting of plates, walls, shells, and members. The program can also design combined structures as well as solid and contact elements.

Price of First License
4,450.00 EUR
RFEM 6
Rendering Reinforcement Bars

Design

In the Concrete Design add-on, various designs according to international standards are possible. You can design members, surfaces, and columns, as well as perform punching and deformation analyses.

Price of First License
2,450.00 EUR