Line Welded Joints in RFEM 6

Technical Article on the Topic Structural Analysis Using Dlubal Software

  • Knowledge Base

Technical Article

Line welded joints are a useful program feature allowing the calculation of weld stresses between surfaces in RFEM 6. Hence, if a weld is defined for a line in a surface model, the stresses of this weld can be determined with the "Stress-Strain Analysis" add-on. This new feature is available in the Types for Lines entry of the Navigator.

The line welded joints can be defined via the Dialog Box "New Line Welded Joint", as shown in Image 2. The selection of joint type is important for the definition of a line welded joint. There are several types available in the program: butt joint, corner joint, lap joint, and tee joint. Please note that it is also necessary to define a weld type. The list offers different options for performing weld designs depending on the joint type.

Line welded joints can be arranged “Continuously” over the entire line length. Thus, when you enter the weld parameters, you must assign the “Weld size” to define the weld thickness, whereas the “Weld length” is taken from the line length. The line welded joints can be assigned to lines and surfaces by assigning the number of the line and surface in the upper right corner of the dialog box, or by selecting the joints graphically in the working window. When doing the latter, please note that the order in which the surfaces are selected is important.

Once you create and assign the line welded joints, you can make basic specifications regarding the line weld joint analysis. This can be done via the Stress-Strain Analysis – Configuration tab of the same dialog box (Image 4), or via the Stress-Strain Analysis entry in the Navigator (Image 5).

First, you can select the stresses to be calculated. For instance, you can calculate weld throat stress due to normal load, bending, surface shear load, weld shear load, normal stress perpendicular to the connection plane, resulting weld throat stress, and so on. You can define the limit stress type and the value of the limit stress.

Special options are also available in this dialog box. For instance, you can control the smoothing of the stresses (that is, the distribution of the local stress peaks over the weld seam length) and the stress distribution for fillet welds. For fillet welds, the stress distribution can be determined based on the simplified method according to EN 1993-1-8 4.5.3.3 or the directional method according to 4.5.3.2. It is also possible to consider weld eccentricities. This way, it is possible to consider additional moments that can occur, for example, in the case of one-sided fillet weld structures.

Once the calculation is done, the stresses in the line welds are available in both graphical and tabular form. The Navigator allows you to control which stresses will be graphically displayed, whereas the table provides an overview of the stresses by design situations, by loading, by line, and by location.

Keywords

Line welded joints Stress-strain analysis

Reference

[1]   Eurocode 3: Design of steel structures - Part 1-8: Design of joints; EN 1993‑1‑8:2005 + AC:2009

Links

Write Comment...

Write Comment...

  • Views 770x
  • Updated 5 September 2022

Contact Us

Contact Dlubal

Do you have any further questions or need advice? Contact us via phone, email, chat or forum or search the FAQ page, available 24/7.

+49 (0) 9673 9203-0

[email protected]

Online Training | English

Eurocode 5 | Timber Structures According to DIN EN 1995-1-1

Online Training 8 December 2022 9:00 AM - 1:00 PM CET

Online Training | English

RFEM 6 | Students | Introduction to Reinforced Concrete Design

Online Training 12 December 2022 4:00 PM - 5:00 PM CET

Stress Analysis of Surfaces and Members in RFEM 6

Stress Analysis of Surfaces and Members in RFEM 6

Webinar 15 December 2022 2:00 PM - 3:00 PM CET

New Features in RFEM 6 and RSTAB 9

New Features in RFEM 6 und RSTAB 9

Webinar 21 December 2022 2:00 PM - 3:00 PM CET

Online Training | English

RFEM 6 | Basics

Online Training 19 January 2023 9:00 AM - 1:00 PM CET

Modeling and Design of CLT Panels in RFEM 6

Modeling and Design of CLT Panels in RFEM 6

Webinar 19 January 2023 2:00 PM - 3:00 PM CET

Online Training | English

Eurocode 2 | Concrete Structures According to DIN EN 1992-1-1

Online Training 26 January 2023 9:00 AM - 1:00 PM CET

Online Training | English

Eurocode 3 | Steel Structures According to DIN EN 1993-1-1

Online Training 2 March 2023 9:00 AM - 1:00 PM CET

Online Training | English

Eurocode 5 | Timber Structures According to DIN EN 1995-1-1

Online Training 16 March 2023 9:00 AM - 1:00 PM CET

Online Training | English

RFEM 6 | Dynamic Analysis and Seismic Design According to EC 8

Online Training 30 March 2023 9:00 AM - 1:00 PM CEST

Geotechnical Analysis with Construction Stages in RFEM 6

Geotechnical Analysis with Construction Stages in RFEM 6

Webinar 1 December 2022 2:00 PM - 3:00 PM CET

Online Training | English

RFEM 6 | Students | Introduction to Timber Design

Online Training 25 November 2022 4:00 PM - 5:00 PM CET

Online Training | English

RFEM 6 | Dynamic Analysis and Seismic Design According to EC 8

Online Training 23 November 2022 9:00 AM - 1:00 PM CET

Online Training | English

RFEM 6 | Students | Introduction to Reinforced Concrete Design

Online Training 21 November 2022 4:00 PM - 5:00 PM CET

Online Training | English

RFEM 6 | Students | Introduction to Reinforced Concrete Design

Webinar 21 November 2022 4:00 PM - 5:00 PM CET

Online Training | English

Eurocode 3 | Steel Structures According to DIN EN 1993-1-1

Online Training 17 November 2022 9:00 AM - 1:00 PM CET

Interfaces with RFEM 6 Briefly Presented: Archicad and SAF

Interfaces with RFEM 6 Briefly Presented: Archicad and SAF

Webinar 16 November 2022 2:00 PM - 3:00 PM CET

RFEM 6
Hall with Arched Roof

Main Program

The structural analysis program RFEM 6 is the basis of a modular software system. The main program RFEM 6 is used to define structures, materials, and loads of planar and spatial structural systems consisting of plates, walls, shells, and members. The program can also design combined structures as well as solid and contact elements.

Price of First License
4,450.00 EUR
RSTAB 9
Structural Frame and Truss Analysis Software

Main Program

The structural frame & truss analysis and design program RSTAB 9 contains a similar range of functions as the FEA software RFEM, paying special attention to frames and trusses. Therefore, it is very easy to use and for many years, it has been the best choice for the structural analysis of beam structures consisting of steel, concrete, timber, aluminum, and other materials.

Price of First License
2,850.00 EUR