Wildlife Crossing AM2 in Carinthia, Austria
Customer Project
The wildlife crossing AM2 has been built with a construction method for concrete shell structures called Pneumatic Forming of Hardened Concrete (PFHC). This new method has been developed by the TU Wien in the context of the research project "Double Curved Shell Structures".
Investor and Design |
Austrian Federal Railways (ÖBB) www.oebb.at |
Geometry Optimization and Structural Analysis |
Technische Universität Wien Institute of Structural Engineering www.tuwien.ac.at |
The new bridge spans the new double-track line of the Koralm Railway in the south of Carinthia. In order to test as many design details as possible, a first test shell on a scale of 1:2 was built, now being used as a roofing for events.
Functioning of Construction Method PFHC
First, a flat concrete slab with wedge-shaped outlets, in which wedge-shaped air cushions are mounted, is casted. On the slab's edge, unbonded tendons are placed in sheathes. Subsequent to the concrete's hardening, an air cushion lying underneath is blown up, transforming the concrete slab into a double curved shell. At the end of the transformation, the tensioning cables are prestressed additionally. They are anchored as soon as all joints are sealed with concrete or grout.
Construction of Wildlife Crossing
The thickness of the transformed shell is 10 cm and supplemented by a concrete topping of 35 cm. Fine cracks arising during the transformation are sealed by this additional layer of concrete. The bottom side of the shell is free from cracks due to the compression zone located there during the transformation.
The entire shell structure of the bridge has ground plan dimensions of 36.7 x 38.7 m and a height of 8.9 m. Its shape is based on the supporting structure's optimization corresponding to the occurring loads and given boundary conditions. Due to this optimization, a state of membrane stress is reached which is favorable for the structural behavior.
The ecological balance of the wildlife crossing has been impressive. In comparison to a reinforced concrete frame originally planned as a crossing alternative, the environmental pollution could be reduced by about 40%, evaluated with regard to the global warming potential (CO2 equivalents).
Contact us
Do you have questions or need advice?
Contact our free e-mail, chat, or forum support or find various suggested solutions and useful tips on our FAQ page.
Recommended Events
Eurocode 5 | Timber structures according to EN 1995-1-1
Online Training 17 March 2021 8:30 AM - 12:30 PM CET
Eurocode 3 | Steel structures according to DIN EN 1993-1-1
Online Training 18 March 2021 8:30 AM - 12:30 PM CET
Eurocode 3 | Steel structures according to DIN EN 1993-1-1
Online Training 6 May 2021 8:30 AM - 12:30 PM
Eurocode 2 | Concrete structures according to DIN EN 1992-1-1
Online Training 11 May 2021 8:30 AM - 12:30 PM
Eurocode 5 | Timber structures according to DIN EN 1995-1-1
Online Training 20 May 2021 8:30 AM - 12:30 PM
RFEM | Structural dynamics and earthquake design according to EC 8
Online Training 2 June 2021 8:30 AM - 12:30 PM
Stability Design in Steel Construction with RFEM and RSTAB
Webinar 1 December 2020 2:00 PM - 2:45 PM CET
Videos
KB 000674 | Defining Mandrel Diameter for Foundation Reinforcement in RF-/FOUNDATION Pro
Length 0:36 min
KB000610 | Automatically Dimensioning the Foundation Slab Geometry with RF-/FOUNDATION Pro
Length 0:40 min
KB 000605 | Setting the Concrete Cover in RF-/FOUNDATION Pro According to EN 1992-1-1
Length 0:32 min
Models to Download
Knowledge Base Articles

New
Using Modified Stiffnesses for Dynamic Calculations
In RFEM, it is possible to modify stiffnesses for materials, cross -sections, members, load cases, and load combinations in many places.
Screenshots
Product Features Articles

Material Model Orthotropic Masonry 2D
The material model Orthotropic Masonry 2D is an elastoplastic model that additionally allows softening of the material, which can be different in the local x- and y-direction of a surface. The material model is suitable for (unreinforced) masonry walls with in-plane loads.
Frequently Asked Questions (FAQ)
- How can I display the deformation in the current construction stage and in relation to the initial system in RF‑STAGES?
- Is it possible to define orthotropic surface loads in RFEM? I would like to subject a surface to different temperature loads by a direction.
- The calculation of my model results in unrealistically high stresses at many locations. What is the reason?
- Is it also possible to enter the temperature for a surface in the XZ plane by using the height (variable in Z)?
- Does Dlubal Software provide any solution for composite bridge construction, or perhaps also verification examples or reference objects?
- In the case of the "Initial strain from other LC/CO" feature, I cannot retrace internal forces. How is this function mapped internally?
- Which analysis is used in RF‑STAGES or STAGES to calculate temporary loads and the generated combinations?
- How is it possible to enter the values for skin friction and pile end resistance during displaying of bored piles when designing member elastic foundations in the program?
- Can I use surface releases to separate two overlapping surfaces?
- How can I create a curved or arched section?
Customer Projects