Calculation of Tie Reinforcement with RF-CONCRETE Members

Technical Article on the Topic Structural Analysis Using Dlubal Software

  • Knowledge Base

Technical Article

This article deals with determining the concrete reinforcement for a beam stressed by tension only according to EN 1992-1-1. The aim is to show the tensile load of a member-type element (without imposed deformations) and to define the concrete reinforcement in accordance with the standard's construction rules and provisions using the RFEM structural analysis software.

What does tension for a concrete element mean?

A section of a structural element is stressed by simple tension when the forces acting on one side of the section are reduced at the section's center of gravity to a single force N. This normal force N is then perpendicular to the section and directed towards the side where the forces act. The self-weight is neglected in the concrete and the section is uniformly subjected to tension.

Tensile Stress in Steel

For steel with a σ - ε diagram showing an inclined graph, the equation to the right of the graph corresponding to the tensile behavior of steel is written according to the steel's characteristic values set forth in §3.2. 7 (2) of EN 1992-1-1.

Stress in Reinforcement

σs = fyd + k · fyd - fydεuk - fydEs · εs - fydEs

σs Stress in reinforcement
fyd Design value of yield strength = fyk / γs
k Characteristic limits ratio = ftk / fyk
εuk Limit deformation
Es Modulus of elasticity
εs Deformation in reinforcement = εud = 0.9 ⋅ εuk
fyk Characteristic yield strength
γs Partial safety factor of steel
ftk Characteristic value of tensile strength
εud Design value of limit deformation

Longitudinal Reinforcement

Please note: the concrete under tension is neglected for pure tension. In this case, only steels fully balance the tensile force NEd . Thus, the necessary reinforcement area is determined according to the tensile force and the provided stress.

As = NEd / σs
As ... Reinforcement area
NEd ... Ultimate normal force

Application of the Theory Using RF-CONCRETE Members

We look at an example of an element subjected to simple tension by analyzing the results obtained for the longitudinal reinforcements. You will find the input data below:

  • Permanent loads: Ng = 100 kN
  • Variable loads: Nq = 40 kN
  • Square section: 20/20 cm
  • Concrete strength class: C25/30
  • Steel: S 500 A for inclined graph
  • Diameter of longitudinal reinforcement: ϕl = 12 mm
  • Diameter of transverse reinforcement: ϕt = 6 mm
  • Concrete cover: 3 cm
  • Control of cracking not required.

In order to verify the material settings in RF-CONCRETE Members, Image 02 describes the materials used for concrete and reinforcement.

Ultimate Limit State

Design loading in the ultimate limit state:

NEd = 1.35 ⋅ 100 + 1.5 ⋅ 40 = 195.00 kN

Provided Tensile Stress

Ultimate limit state for a durable, transient design situation:

fyd = 500 / 1.15 = 435 MPa

k = 525 / 500 = 1.05 according to Table C.1 of EN 1992-1-1

εuk = 25‰

εud = 0.9 ⋅ 25 = 22.5‰

σs = 435 + (1.05 ⋅ 435 - 435) / (2.5 - 435 / (200,000)) ⋅ [2.25 - 435 / (200,000)] = 454 MPa

Required Longitudinal Reinforcement

Longitudinal reinforcements for the ultimate limit state:

As = 0.195 / 454 ⋅ 104 = 4.30 cm²

Provided Longitudinal Reinforcement

Having configured the reinforcing steel with a diameter of 12 mm in RF-CONCRETE Members, the provided reinforcement determined automatically by the add-on module is 4 bars, with symmetrical distribution on the lower and upper parts of the section, i.e. 2 x 2 HA12, which results in the following reinforcement area:

As = 4 ⋅ 1.13 = 4.52 cm²

Transverse Reinforcement

With the transverse reinforcement also having been defined by the user, RF-CONCRETE Members can automatically determine the spacings according to the standard, and check whether their arrangement conforms.

In our case, by imposing stirrups with a diameter of 6 mm, the program gives us a spacing of 0.122 m, but also displays warning message No. 155) in the Notes column that can be seen in Image 07.

The formula referring to §9.2.2 (8) of EN 1992-1-1 is defined below.

Sl,max = 0.75 ⋅ d
Sl,max ... Maximum transverse spacing of stirrups
d ... Effective height
d = h - e - ∅t - ∅l/2
h ... Cross-section height
e ... Concrete Cover

The previous formulas give us the following results:

d = 0.200 - 0.03 - 0.006 - 0.012 / 2 = 0.158 m

Sl,max = 0.75 ⋅ 0.158 = 0.12 m

Therefore, warning message 155 appears because the spacing between the stirrup legs of a beam in the transverse direction exceeds the limit value given by the standard. The problem can be solved by increasing the number of stirrup legs in the settings for the stirrup reinforcement, as detailed in this FAQ.

Closing words

Having set the parameters beforehand, RF-CONCRETE Members gives the number of rebars required according to the defined arrangement, in order to verify the tensile load according to the internal forces coming from RFEM. Depending on the warning messages displayed, it is also possible for the user to modify the reinforcement and its arrangement after the calculation.

Author

M.Eng. Milan Gérard

M.Eng. Milan Gérard

Sales & Technical Support

Milan Gérard works at the Paris site. He is responsible for sales and provides technical support to our French-speaking customers.

Keywords

Eurocodes Tension Reinforcement

Reference

[1]   Roux, J. (2007). Pratique de l'eurocode 2 - Guide d'application. Paris: Groupe Eyrolles.
[2]   Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings; EN 1992-1-1:2011-01

Links

Write Comment...

Write Comment...

  • Views 849x
  • Updated 2 November 2021

Contact Us

Contact Dlubal

Do you have further questions or need advice? Contact us via phone, email, or chat or find suggested solutions and useful tips on our FAQ page available 24/7.

+49 9673 9203 0

info@dlubal.com

Event Invitation

NCSEA Structural Engineering Summit

Conference 15 February 2022 - 16 February 2022

Online Training | English

Eurocode 2 | Concrete Structures According to DIN EN 1992-1-1

Online Training 25 February 2022 8:30 AM - 12:30 PM CET

Event Invitation

2022 NASCC: The Steel Conference

Conference 23 March 2022 - 25 March 2022

Event Invitation

International Mass Timber Conference

Conference 12 April 2022 - 14 April 2022

Event Invitation

Structures Congress 2022

Conference 21 April 2022 - 22 April 2022

ACI 318-19 Concrete Design in RFEM 6

ACI 318-19 Concrete Design in RFEM 6

Webinar 20 January 2022 2:00 PM - 3:00 PM EST

Consider Construction Stages \n in RFEM 6

Consider Construction Stages in RFEM 6

Webinar 13 January 2022 2:00 PM - 3:00 PM CET

Introduction to New RFEM 6

Introduction to the New RFEM 6

Webinar 11 November 2021 2:00 PM - 3:00 PM EST

Glass Design with Dlubal Software

Glass Design with Dlubal Software

Webinar 8 June 2021 2:00 PM - 2:45 PM

Blast Time History Analysis in RFEM

Blast Time History Analysis in RFEM

Webinar 13 May 2021 2:00 PM - 3:00 PM EST

Timber Structures | Part 2: Design

Timber Beam and Surface Structures | Part 2: Design

Webinar 11 May 2021 2:00 PM - 3:00 PM

Plate and Shell Buckling Utilizing Dlubal Software

Plate and Shell Buckling Utilizing Dlubal Software

Webinar 30 March 2021 2:00 PM - 2:45 PM

CSA S16: 19 Steel Design in RFEM

CSA S16:19 Steel Design in RFEM

Webinar 10 March 2021 2:00 PM - 3:00 PM EST

The Most Common User Errors With RFEM and RSTAB

The Most Common User Errors With RFEM and RSTAB

Webinar 4 February 2021 2:00 PM - 3:00 PM CET

ADM 2020 Member Design in RFEM

ADM 2020 Member Design in RFEM

Webinar 19 January 2021 2:00 PM - 3:00 PM EST

Dlubal Info Day

Dlubal Info Day Online | 15 December 2020

Webinar 15 December 2020 9:00 AM - 4:00 PM CET

Stability Design in Steel Construction with RFEM and RSTAB

Stability Design in Steel Construction with RFEM and RSTAB

Webinar 1 December 2020 2:00 PM - 2:45 PM CET

FEM - Troubleshooting and Optimisation in RFEM

FEA Troubleshooting and Optimization in RFEM

Webinar 11 November 2020 2:00 PM - 3:00 PM EST

RFEM 5
RFEM

Main Program

Structural engineering software for finite element analysis (FEA) of planar and spatial structural systems consisting of plates, walls, shells, members (beams), solids, and contact elements

Price of First License
3,540.00 USD
RFEM 5
RF-CONCRETE

Add-on Module

Design of reinforced concrete members and surfaces (plates, walls, planar structures, shells)

Price of First License
810.00 USD