Calcul de poteaux béton soumis à la compression centrée avec RF-CONCRETE Columns

Article technique sur le calcul de structure et l'utilisation des produits Dlubal

  • Base de connaissance

Article technique

Le présent article s'inscrit à titre de comparaison avec l'article suivant : Calcul de poteaux béton soumis à la compression centrée avec RF-CONCRETE Members. Il s'agit donc de prendre exactement la même application théorique réalisée sur RF-CONCRETE Members et de la reproduire sur RF-CONCRETE Columns. Ainsi, l'objectif est de comparer les différents paramètres d'entrées et les résultats obtenus pour les deux modules additionnels de vérification de barres en béton type poteaux.

Rappel de l'application théorique

La compression centrée s'applique si l'on admet que les effets du second ordre (imperfections, dissymétrie, etc.) peuvent être négligés en respectant notamment le critère d'élancement qui dépendra de nombreux paramètres (coefficient d'élancement, élancement limite, longueur efficace).

Ensuite, sous la sollicitation unique d'un effort normal Ned, la force que peut équilibrer la section de béton correspond à sa capacité portante maximale en compression qui dépend directement de sa section et de sa résistance de calcul. Les armatures vont alors équilibrer le reste de la charge de compression centrée.

Application de la théorie avec le module additionnel RF-CONCRETE Columns

Dans cet article, nous allons analyser les résultats obtenus automatiquement lors du calcul des armatures.

Les paramètres restent les mêmes et sont rappelés ci-après :

  • Charges permanentes : Ng = 1 390 kN
  • Charges variables : Nq = 1 000 kN
  • Longueur poteau : l = 2,1 m
  • Section rectangulaire : largeur b = 40 cm / hauteur h = 45 cm
  • Poids propre du poteau négligeable.
  • Poteau non intégré au contreventement.
  • Classe de résistance du béton : C25/30
  • Aciers : S 500 A à palier incliné
  • Diamètre des armatures longitudinales : ϕ = 20 mm
  • Diamètre des armatures transversales : ϕt = 8 mm
  • Enrobage : 3 cm

Section réelle à calculer

N'ayant pas la possibilité sur RF-CONCRETE Columns d'optimiser la hauteur de section, on modifie directement la hauteur réelle h de la section à 45 cm.

La figure 02 décrit les étapes pour modifier la hauteur de la section rectangulaire sur RF-CONCRETE Columns.

Caractéristique des matériaux

Les formules de résistance et de déformation des matériaux sont détaillées dans l'article technique mentionné en haut de cet article.

Aire totale de la section de béton seul

Ac = b ⋅ h = 0,40 ⋅ 0,45 = 0,18 m²

Valeur de calcul de la résistance en compression du béton

fcd = 16,7 MPa

Déformation relative en compression pour la contrainte maximale

εc2 = 2 ‰

Limite d'élasticité de calcul de l'acier de béton armé

fyd= 435 MPa

Déformation limite dans l'armature

εud = 2,17 ‰

Contrainte dans l'armature

σs = 400 MPa

Afin de vérifier le paramétrage des matériaux sur RF-CONCRETE Columns, la figure 03 affiche les contraintes et les déformations prévues pour le béton et les armatures requises.

État limite ultime

Sollicitations de calculs à l'état limite ultime

NEd = 1,35 ⋅ Ng + 1,5 ⋅ Nq

NEd = 1,35 ⋅ 1390 + 1,5 ⋅ 1000 = 3,38 MN

NEd ... Valeur de calcul de l'effort normal agissant

Non prise en compte des effets du second ordre à l'ELU

Le modèle étant identique pour cet article et pour l'article technique qui sert de base de comparaison, nous avons modélisé le même poteau encastré en pied et libre en tête pour pouvoir appliquer correctement une charge en tête de poteau. Cependant nous considérons que le poteau est tout de même fixé en tête à des poutres, et pour cela nous avons appliqué un facteur de longueur efficace au poteau qui permet de modifier la valeur d'élancement du poteau.

Facteur de longueur efficace selon l'EN 1992-1-1 - 5.8.3.2 (3) - Formule 5.15

kcr = 0,59

Élancement selon l'EN 1992-1-1 - 5.8.3.2 (1) - Formule 5.14

λz = 10,73 m

Élancement limite selon l'EN 1992-1-1 - 5.8.3.1 (1) - Formule 5.13N

n = 1,125

λlim = 20 ⋅ 0,7 ⋅ 1,1 ⋅ 0,7 / √1,125 = 10,16 m

λz > λlim → La condition n'est pas respectée.

Cependant, nous allons tout de même calculer en compression simple car l'écart étant faible, nous verrons par la suite qu'avec le ratio mécanique d'armatures, la condition sera respectée. Pour cela, la figure 05 décrit comment désactiver la possibilité d'avoir un flambement autour de chaque axe de la section dans RF-CONCRETE Columns.

Section résistante

Force d'équilibre du béton

Fc = Ac ⋅ fcd = 0,40 ⋅ 0,45 ⋅ 16,7 = 3 MN

Force d'équilibre des armatures

Fs = NEd - Fc = 3,38 - 3 = 0,38 MN

On en déduit la section d'armatures correspondantes :

Aire de la section d'armature

As = Fs / σs = 0,38 / 400 ⋅ 104 = 9,5 cm²

En ayant paramétré des aciers de diamètre 20 mm dans RF-CONCRETE Columns, les armatures prévues déterminées automatiquement par le module sont 4 barres, avec une répartition dans les coins comme demandé soit 1 HA 20 par coin ce qui nous donne l'aire de section d'armatures suivantes :

As = 4 ⋅ 3,142 = 12,57 cm²

Ratio mécanique d'armatures

ω = (As ⋅ fyd) / (Ac ⋅ fcd) = 0,182

Vérification finale de l'élancement limite

λlim = (20 ⋅ 0,7 ⋅ √(1 + 2 ⋅ 0,182) ⋅ 0,7) / √1,125 = 10,79 m

λz < λlim → Le critère d'élancement est respecté.

Auteur

M.Eng. Milan Gérard

M.Eng. Milan Gérard

Vente et Support technique

Milan Gérard travaille sur le site de Paris. Il assure la vente et le support technique chez Dlubal.

Mots-clés

Eurocodes Compression Armatures Élancement

Littérature

[1]   Eurocode 2 : Calcul des structures en béton – Partie 1-1 : Règles générales et règles pour les bâtiments ; NF EN 1992-1-1 : 2005
[2]   Roux, J.: Pratique de l'eurocode 2 - Guide d'application. Paris: Groupe Eyrolles, 2007

Liens

Laissez un commentaire...

Laissez un commentaire...

  • Vues 437x
  • Mis à jour 6 septembre 2021

Contactez-nous

Contacter Dlubal

Avez-vous des questions ou besoin de conseils? Contactez-nous via notre assistance gratuite par e-mail, chat ou forum ou consultez notre FAQ à tout moment.

+33 1 78 42 91 61

info@dlubal.fr

Formation en ligne | Anglais

Eurocode 5 | Structures en bois selon la DIN EN 1995-1-1

Formation en ligne 23 septembre 2021 8:30 - 12:30 CEST

Online training | French

RFEM | Fonctions de base

Formation en ligne 12 octobre 2021 9:00 - 12:00 CEST

Online training | French

Eurocode 3 | Calcul de structures en acier selon l'EN 1993-1-1 | GRATUIT

Formation en ligne 26 octobre 2021 9:00 - 13:00 CEST

Online training | French

RFEM | Fonctions de base | GRATUIT

Formation en ligne 2 novembre 2021 9:00 - 12:00 BST

Online training | French

Eurocode 2 | Calcul de structures en béton selon l'EN 1992-1-1 | GRATUIT

Formation en ligne 9 novembre 2021 9:00 - 13:00 BST

Online training | French

Eurocode 5 | Calcul de structures en bois selon l'EN 1995-1-1 | GRATUIT

Formation en ligne 23 novembre 2021 9:00 - 13:00 BST

Invitation à l'événement

Conférence internationale sur le bois massif

Conférence 12 avril 2022 - 14 avril 2022

Invitation à l'événement

Structures Congress 2022

Conférence 21 avril 2022 - 22 avril 2022

Modélisation et calcul de solides dans RFEM

Modélisation et calcul de solides dans RFEM

Webinar 28 juillet 2021 15:00 - 16:00 CEST

Calcul de structures en verre avec RFEM

Calcul de structures en verre avec Dlubal

Webinar 8 juin 2021 14:00 - 14:45 CEST

Structures en bois | Partie 2 : Situation

Calcul de structures en bois | Partie 2 : Calcul

Webinar 11 mai 2021 14:00 - 15:00 CEST

Échange de données entre RFEM et REVIT

Échange de données entre RFEM et REVIT

Webinar 30 avril 2021 15:00 - 16:00 CEST

RFEM
RFEM

Programme de base

Logiciel de calcul de structures aux éléments finis (MEF) pour les structures 2D et 3D composées de plaques, voiles, coques, barres (poutres), solides et éléments d'assemblage

Prix de la première licence
3 540,00 USD
RFEM
CONCRETE Columns (version anglaise)

Module additionnel

Calcul du béton armé selon la méthode du poteau type (ou la méthode basée sur la courbure nominale)

Prix de la première licence
630,00 USD