1720x
009048
2025-06-03

VE0309 | Eurocode Rectangular Plan Buildings – Wind Force Coefficient

Description

In the current validation example, we investigate the wind force coefficient (Cf) for cubic structures based on the European standard EN 1991-1-4 [1]. There are three-dimensional cases that we will explain in more detail in the next part.

One of the critical aspects of CFD simulation is selecting accurate and compatible configurations for input parameters such as turbulence models, wind velocity profiles, turbulence intensity, boundary layer conditions, and the order of discretization. However, the Eurocode (EN 1991-1-4) does not provide detailed guidance on these numerical settings. In the current example for a cubic structure, we recommend compatible settings regarding the Eurocode standard. As can be seen in EN 1991-1-4, there are different tables and diagrams for static calculation of wind load.

Analytical Solution

Cubic structures are classified into three-dimensional categories based on the height-to-depth ratio, as defined in Table 7.1 of EN 1991-1-4 and illustrated in Figure 1. The input parameters for each dimensional category are defined according to Table 1.

For the first case, a high-rise cube shape with a height-to-depth ratio of h/d=5 is considered. The corresponding input parameters are presented in the following table:

Dimensional Ratio: h/d=5
Wind Velocity V 30 m/s
Height h 50 m
Depth d 10 m
Width b 12 m
Solidity Ratio (Eq. 7.28, EN 1991-1-4) φ 1 -
Effective Slenderness (Table 7.16, EN 1991-1-4) λ 5.83 -
End-Effect Factor (Fig. 7.36, EN 1991-1-4) ψλ 0.68 -
Reduction Factor (Fig. 7.24, EN 1991-1-4) ψr 1 -
Force Coefficient Without Free-End Flow (Fig. 7.23, EN 1991-1-4) Cf,0 2.30 -
Force Coefficient (Eq. 7.9, EN 1991-1-4) Cf 1.564 -
Air Density - RWIND ρ 1.25 kg/m3
Turbulence Model - RWIND Steady RANS k-ω SST - -
Kinematic Viscosity (Equation 7.15, EN 1991-1-4) - RWIND ν 1.5*10-5 m2/s
Scheme Order - RWIND Second - -
Residual Target Value - RWIND 10-5 - -
Residual Type - RWIND Pressure - -
Minimum Number of Iterations - RWIND 800 - -
Boundary Layer - RWIND NL 10 -
Type of Wall Function - RWIND Enhanced / Blended - -
Turbulence Intensity (Best Fit) - RWIND I 15% -

For the next case, a medium-rise cubic structure with a height-to-depth ratio of h/d=1 is considered. The corresponding input parameters are listed in the following table:

Dimensional Ratio: h/d=1
Wind Velocity V 30 m/s
Height h 10 m
Depth d 10 m
Width b 12 m
Solidity Ratio (Eq. 7.28, EN 1991-1-4) φ 1 -
Effective Slenderness (Table 7.16, EN 1991-1-4) λ 1.66 -
End-Effect Factor (Fig. 7.36 , EN 1991-1-4) ψλ 0.62 -
Reduction Factor (Fig. 7.24, EN 1991-1-4) ψr 1 -
Force Coefficient Without Free-End Flow (Fig. 7.23, EN 1991-1-4) Cf,0 2.30 -
Force Coefficient (Eq. 7.9, EN 1991-1-4) Cf 1.426 -
Air Density - RWIND ρ 1.25 kg/m3
Turbulence Model - RWIND Steady RANS k-ω SST - -
Kinematic Viscosity (Equation 7.15, EN 1991-1-4) - RWIND ν 1.5*10-5 m2/s
Scheme Order - RWIND Second - -
Residual Target Value - RWIND 10-5 - -
Residual Type - RWIND Pressure - -
Minimum Number of Iterations - RWIND 800 - -
Boundary Layer - RWIND NL 10 -
Type of Wall Function - RWIND Enhanced / Blended - -
Turbulence Intensity (Best Fit) - RWIND I 7.5% -

For the final case, a low-rise cubic structure with a height-to-depth ratio of h/d=0.25 is considered. The corresponding input parameters are presented in the following table:

Dimensional Ratio: h/d=0.25
Wind Velocity V 30 m/s
Height h 2.50 m
Depth d 10 m
Width b 2.50 m
Solidity Ratio (Eq. 7.28, EN 1991-1-4) φ 1 -
Effective Slenderness (Table 7.16, EN 1991-1-4) λ 2 -
End-Effect Factor (Fig. 7.36, EN 1991-1-4) ψλ 0.63 -
Reduction Factor (Fig. 7.24, EN 1991-1-4) ψr 1 -
Force Coefficient Without Free-End Flow (Fig. 7.23, EN 1991-1-4) Cf,0 1.20 -
Force Coefficient (Eq. 7.9, EN 1991-1-4) Cf 0.756 -
Air Density - RWIND ρ 1.25 kg/m3
Turbulence Model - RWIND Steady RANS k-ω SST - -
Kinematic Viscosity (Equation 7.15, EN 1991-1-4) - RWIND ν 1.5*10-5 m2/s
Scheme Order - RWIND Second - -
Residual Target Value - RWIND 10-5 - -
Residual Type - RWIND Pressure - -
Minimum Number of Iterations - RWIND 800 - -
Boundary Layer - RWIND NL 10 -
Type of Wall Function - RWIND Enhanced / Blended - -
Turbulence Intensity (Best Fit) - RWIND I 15% -

Results

The wind force coefficients (Cf) are evaluated for various height-to-depth ratios and turbulence intensities. For the first case, a high-rise cubic structurer with h/d=5, the resulting Cf value is presented in the following table:

Turbulence Intensity (%) (h/d=5) Fd (N) ρ (kg/m3) u (m/s) A (m2) Cf
1.00 - RWIND 498829 1.25 30 600 1.478
5.00 - RWIND 518278 1.25 30 600 1.536
7.50 - RWIND 521515 1.25 30 600 1.545
10.00 - RWIND 520397 1.25 30 600 1.542
15.00 - RWIND 525011 1.25 30 600 1.556
20.00 - RWIND 533059 1.25 30 600 1.579
25.00 - RWIND 543164 1.25 30 600 1.609
Eurocode - - - - 1.564

For the second case, a medium-rise cubic structure with h/d=1, the corresponding Cf value is presented in the following table:

Turbulence Intensity (%) (h/d=1) Fd (N) ρ (kg/m3) u (m/s) A (m2) Cf
1.00 - RWIND 97148 1.25 30 120 1.439
5.00 - RWIND 95497 1.25 30 120 1.415
7.50 - RWIND 96420 1.25 30 120 1.428
10.00 - RWIND 96453 1.25 30 120 1.429
15.00 - RWIND 96666 1.25 30 120 1.432
20.00 - RWIND 91027 1.25 30 120 1.349
25.00 - RWIND 89827 1.25 30 120 1.331
Eurocode - - - - 1.426

For the final case, a low-rise cubic structure with h/d=0.25, the corresponding Cf value is presented in the following table:

Turbulence Intensity (%) (h/d=0.25) Fd (N) ρ (kg/m3) u (m/s) A (m2) Cf
1.00 - RWIND 2711 1.25 30 6.25 0.771
5.00 - RWIND 2692 1.25 30 6.25 0.766
7.50 - RWIND 2671 1.25 30 6.25 0.760
10.00 - RWIND 2667 1.25 30 6.25 0.759
15.00 - RWIND 2650 1.25 30 6.25 0.754
20.00 - RWIND 2662 1.25 30 6.25 0.757
25.00 - RWIND 2630 1.25 30 6.25 0.748
Eurocode - - - - 0.756

Conclusion

The results demonstrate a strong agreement between the wind force coefficients obtained from RWIND simulations and those specified in the Eurocode (EN 1991-1-4). Based on the analysis, a recommended range of turbulence intensity is proposed for different height-to-depth (h/d) ratios. Specifically, turbulence intensities between 7.5% and 15% yield more accurate predictions of the wind force coefficient (Cf).

An addition key finding relates to the wind tunnel size used in the simulation. While the default wind tunnel dimensions were sufficient for the first two cases (h/d = 5 and h/d = 1), the final case (h/d = 0.25) required a modified wind tunnel size to achieve improved accuracy in the results.

The cube model with the recommended simulation settings is available to download here:



;