Capital C (Diamond Exchange), Amsterdam, the Netherlands

Structures Analysed with Dlubal Software

  • Customer Project

Customer Project

The former Diamond Exchange in Amsterdam, now known as Capital C, has been restored to its former glory after a radical renovation. This national monument has not only been returned to its original shape, but also includes a new steel-and-glass roof.

Owner Zadelhoff B.V.
Amsterdam, the Netherlands
www.zadelhoff.nl

Sijthoff Media
Amsterdam, the Netherlands
www.sijthoffmedia.nl
Architect ZJA Zwarts & Jansma Architecten
Amsterdam, the Netherlands
www.zja.nl
Structural Analysis and Construction Octatube
Delft, the Netherlands
www.octatube.nl

Steel-Glass Dome Information

The structure was designed by the well-known architectural firm of ZJA Zwarts & Jansma Architects. The project additionally won the prestigious MIPIM Award 2020 - Best Refurbished Building, the Dutch Steel Award 2020, and the German Design Award 2021.

The Octatube company carried out the structural design, utilizing the FEM program RFEM. Octatube is a design-build planning and construction company for complex architectural structures. The main design focus was placed on the use of steel and glass to implement a sophisticated architectural look for the roof, ranging from the design to the construction of the building.

Structure and Design

The roof's structural system is best described as a cylindrical grid shell with two domes at either end. Because of the roof's adjacent building and the opening for the facade's entrance, sections had been removed from the grid shell. In principal, the dome has only one repetitive structural joint, but the free shape creates differences at each joint, requiring unique parts. In total, around 1,000 different steel components and 200 glass panels were used.

For complex projects, flexible structural analysis and design software is needed that is capable of modeling a wide range of unique elements. Octatube utilized RFEM together with Rhinoceros (Rhino), Grasshopper, and IDEA StatiCa. During the preliminary and final design phases, the architect's Rhino-Grasshopper line model was used as the starting point. In this model, the main and secondary lines were set.

The model's grid lines and curvature were thoroughly analyzed and optimized. The line model and the structural loads from Grasshopper were imported into RFEM, where the model could be structurally optimized. The loads on the structure were generated with a direct connection between Rhino and a user-defined interface. For the indirect connection between Grasshopper and RFEM, Excel was used. The unique design requirement included the square glass surfaces to be completely flat, similar to the exterior of a diamond.

The rectangular hollow cross-section properties were determined with RFEM and IDEA StatiCa. Since the rotational stiffness was very important, two models of the entire structure and the joints were created in order to adequately model the stiffness and strength of the grid shell. These models were used as the upper and lower boundaries for the deformations and stiffness. The upper limit model included all joints as completely rigid to determine the load effects on the joints.

The lower limit for the rotational stiffness was determined iteratively between RFEM and IDEA CONNECTION for each joint type. This flexible joint model was used to check the stiffness and stability of the grid shell. The supporting structure, located under the grid shell, was also included to properly determine loads. This was necessary to avoid the time-consuming and iterative process of determining the vertical supports' spring stiffness, which would vary for each load case.

Project Location

Weesperplein 4B
1018 XA Amsterdam, the Netherlands

Keywords

Capital C Diamond Exchange Amsterdam the Netherlands Steel Glass Dome

Write Comment...

Write Comment...

  • Views 2562x
  • Updated 23 February 2022

Contact Us

Contact Dlubal

Do you have any further questions or need advice? Contact us via phone, email, chat or forum or find suggested solutions and useful tips on our FAQ page, available 24/7.

+49 9673 9203-0

[email protected]

Analysis of Steel Joints \n Using FE Model in RFEM 6

Analysis of Steel Joints Using FE Model in RFEM 6

Webinar 29 September 2022 2:00 PM - 3:00 PM CEST

Seismic Design According to EC 8 in RFEM 6 and RSTAB 9

Seismic Design According to Eurocode 8 in RFEM 6 and RSTAB 9

Webinar 11 October 2022 2:00 PM - 3:00 PM CEST

Online Training | English

Eurocode 3 | Steel Structures According to DIN EN 1993-1-1

Online Training 17 November 2022 9:00 AM - 1:00 PM CET

Consider Construction Stages \n in RFEM 6

Consider Construction Stages in RFEM 6

Webinar 8 September 2022 2:00 PM - 3:00 PM CEST

Online Training | English

Eurocode 3 | Steel Structures According to DIN EN 1993-1-1

Online Training 8 September 2022 9:00 AM - 1:00 PM CEST

Form-Finding and Calculation of Membrane Structures in RFEM 6

Form-Finding and Calculation of Membrane Structures in RFEM 6

Webinar 25 August 2022 2:00 PM - 3:00 PM CEST

Online Training | English

Eurocode 3 | Steel Structures According to DIN EN 1993-1-1

Online Training 27 April 2022 8:30 AM - 12:30 PM CEST

Stability and Torsional Warping Analysis in RFEM 6

Stability Analysis and Torsional Warping (7 DOF) in RFEM 6

Webinar 17 March 2022 2:00 PM - 3:00 PM CET

Analysis of Steel Joints Using FE Model in RFEM 6

Analysis of Steel Joints Using FE Model in RFEM 6

Webinar 24 February 2022 2:00 PM - 3:00 PM CET

Section Properties Determination and Stress Analysis in RSECTION 1

Section Properties Determination and Stress Analysis in RSECTION 1

Webinar 17 February 2022 2:00 PM - 3:00 PM CET

Online Training | English

Eurocode 3 | Steel Structures According to DIN EN 1993-1-1

Online Training 10 February 2022 8:30 AM - 12:30 PM CET

Considering Construction Stages \n in RFEM 6

Consider Construction Stages in RFEM 6

Webinar 13 January 2022 2:00 PM - 3:00 PM CET

AISC 360-16 Steel Design in RFEM 6

AISC 360-16 Steel Design in RFEM 6

Webinar 14 December 2021 2:00 PM - 3:00 PM EDT

Online Training | English

Eurocode 3 | Steel Structures According to DIN EN 1993-1-1

Online Training 9 December 2021 8:30 AM - 12:30 PM CET

Introduction to New RFEM 6

Introduction to the New RFEM 6

Webinar 11 November 2021 2:00 PM - 3:00 PM EDT

Modeling and Design of Steel Structures in RFEM 6 and RSTAB 9

Modeling and Design of Steel Structures in RFEM 6 and RSTAB 9

Webinar 20 October 2021 2:00 PM - 3:00 PM CEST

Online Training | English

Eurocode 5 | Timber Structures According to DIN EN 1995-1-1

Online Training 23 September 2021 8:30 AM - 12:30 PM CEST

Online Training | English

Eurocode 3 | Steel Structures According to DIN EN 1993-1-1

Online Training 25 August 2021 8:30 AM - 12:30 PM CEST

Online Training | English

RFEM for Students | USA

Online Training 11 August 2021 1:00 PM - 4:00 PM EDT

Online Training | English

RFEM | Structural Dynamics and Seismic Design According to EC 8

Online Training 11 August 2021 8:30 AM - 12:30 PM CEST

RFEM 5
RFEM

Main Program

Structural engineering software for finite element analysis (FEA) of planar and spatial structural systems consisting of plates, walls, shells, members (beams), solids, and contact elements

Price of First License
3,950.00 EUR
RFEM 5
RF-STEEL

Add-on Module

Stress analysis of steel surfaces and members

Price of First License
1,150.00 EUR
RFEM 5
RF-STEEL EC3

Add-on Module

Design of steel members according to Eurocode 3

Price of First License
1,650.00 EUR
RFEM 5
RF-STABILITY

Add-on Module

Stability analysis according to the eigenvalue method

Price of First License
1,150.00 EUR