Stability Analysis of a Column Under Axial Force and Bending

Technical Article on the Topic Structural Analysis Using Dlubal Software

  • Knowledge Base

Technical Article

In this technical article, a hinged column with a centrally acting axial force and a line load acting on the strong axis will be designed by means of the RF-/STEEL EC3 add-on module according to EN 1993-1-1.

The system assumptions, loadings, internal forces and the cross-section design have already been explained in an earlier article and are therefore not discussed again.

Figure 01 - System

Design Under axial force and Bending Moment According to EN 1993-1-1, 6.3.3 [1]

Components subjected to bending and compression usually have to fulfill the following requirements.

Flexural buckling design:
$\frac{{\mathrm N}_{\mathrm{Ed}}}{\displaystyle\frac{{\mathrm\chi}_{\mathrm z}\;\cdot\;{\mathrm N}_{\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}\;+\;{\mathrm k}_{\mathrm{zy}\;}\cdot\frac{{\mathrm M}_{\mathrm y,\mathrm{Ed}}}{{\mathrm\chi}_{\mathrm{LT}}\;\cdot\;{\displaystyle\frac{{\mathrm M}_{\mathrm y,\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}}\;\leq\;1$

Lateral-torsional buckling design:
$\frac{{\mathrm N}_{\mathrm{Ed}}}{\displaystyle\frac{{\mathrm\chi}_{\mathrm y}\;\cdot\;{\mathrm N}_{\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}\;+\;{\mathrm k}_{\mathrm{yy}\;}\cdot\frac{{\mathrm M}_{\mathrm y,\mathrm{Ed}}}{{\mathrm\chi}_{\mathrm{LT}}\;\cdot\;{\displaystyle\frac{{\mathrm M}_{\mathrm y,\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}}\;\leq\;1$

Flexural Buckling Design About the Minor Axis

$\frac{{\mathrm N}_{\mathrm{Ed}}}{\displaystyle\frac{{\mathrm\chi}_{\mathrm z}\;\cdot\;{\mathrm N}_{\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}\;+\;{\mathrm k}_{\mathrm{zy}\;}\cdot\frac{{\mathrm M}_{\mathrm y,\mathrm{Ed}}}{{\mathrm\chi}_{\mathrm{LT}}\;\cdot\;{\displaystyle\frac{{\mathrm M}_{\mathrm y,\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}}\;\leq\;1$

The effective length of the hinged column is Lcr = 6.50 m.

According to EN 1993-1-1, 6.3.1.2:
$\mathrm\chi\;=\;\frac1{\mathrm\phi\;+\;\sqrt{\mathrm\phi^{2\;}-\;\overline{\mathrm\lambda}^2}}\;\leq\;1\\\mathrm\phi\;=\;0.5\;\cdot\;\left[1\;+\;\mathrm\alpha\;\cdot\;\left(\overline{\mathrm\lambda}\;-\;0.2\right)\;+\;\overline{\mathrm\lambda}^2\;\right]\\{\overline{\mathrm\lambda}}_{\mathrm z}\;=\;\sqrt{\frac{\mathrm A\;\cdot\;{\mathrm f}_{\mathrm y}}{{\mathrm N}_{\mathrm{cr},\mathrm z}}}\\{\mathrm N}_{\mathrm{cr},\mathrm z}\;=\;\frac{\mathrm\pi^2\;\cdot\;\mathrm E\;\cdot\;{\mathrm I}_{\mathrm z}}{\mathrm l^2}\;=\;\frac{\mathrm\pi^2\;\cdot\;21,000\;\mathrm{kN}/\mathrm{cm}^2\;\cdot\;10.140\;\mathrm{cm}^4}{\left(650\;\mathrm{cm}\right)^2}\;=\;4,974.28\;\mathrm{kN}\\{\overline{\mathrm\lambda}}_{\mathrm z}\;=\;\sqrt{\frac{180.6\;\mathrm{cm}^2\;\cdot23.5\;\mathrm{kN}/\mathrm{cm}^2}{4,974.28\;\mathrm{kN}}}\;=\;0.924$

Selection of buckling curve according to Table 6.2:
$\frac{\mathrm h}{\mathrm b}\;=\;\frac{360\;\mathrm{mm}}{300\;\mathrm{mm}}\;=\;1.2\;\leq\;1.2\\{\mathrm t}_{\mathrm f}\;=\;22.5\;\mathrm{mm}\;\leq\;100\;\mathrm{mm}$

Instability perpendicular to the z-axis: Buckling stress curve BSCz: c

Table 6.1 shows the imperfection factor α = 0.49.
$\mathrm\phi\;=\;0.5\;\cdot\;\left[1\;+\;0.49\;\cdot\;\left(0.924\;-\;0.2\right)\;+\;0.924^2\right]\;=\;1.104\\{\mathrm\chi}_{\mathrm z}\;=\;\frac1{1.104\;+\;\sqrt{1.104^2\;-\;0.924^2}}\;=\;0.585\;\leq\;1.0$

For I, H, and rectangular hollow cross-sections that are only subjected to compression and bending, the coefficient kzy = 0 may be assumed.

This results in the design as follows:
$\frac{{\mathrm N}_{\mathrm{Ed}}}{\displaystyle\frac{{\mathrm\chi}_{\mathrm z}\;\cdot\;{\mathrm N}_{\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}\;\leq\;1\\{\mathrm N}_{\mathrm{Rk}\;}=\;\mathrm A\;\cdot\;{\mathrm f}_{\mathrm y}\;=\;180.60\;\mathrm{cm}^2\;\cdot\;23.5\;\frac{\mathrm{kN}}{\mathrm{cm}^2}\;=\;\;4,244.1\;\mathrm{kN}\\\frac{2,000\;\mathrm{kN}}{\displaystyle\frac{0.585\;\cdot\;4,244.1\;\mathrm{kN}}1}\;=\;0.81\;\leq\;1$

→ Design is fulfilled.

Lateral-Torsional Buckling Design

The effective length of the hinged column is Lcr = 6.50 m.

According to EN 1993-1-1, 6.3.1.2:
$\mathrm\chi\;=\;\frac1{\mathrm\phi\;+\;\sqrt{\mathrm\phi^{2\;}-\;\overline{\mathrm\lambda}^2}}\;\leq\;1\\\mathrm\phi\;=\;0.5\;\cdot\;\left[1\;+\;\mathrm\alpha\;\cdot\;\left(\overline{\mathrm\lambda}\;-\;0.2\right)\;+\;\overline{\mathrm\lambda}^2\;\right]\\{\overline{\mathrm\lambda}}_{\mathrm z}\;=\;\sqrt{\frac{\mathrm A\;\cdot\;{\mathrm f}_{\mathrm y}}{{\mathrm N}_{\mathrm{cr},\mathrm y}}}\\{\mathrm N}_{\mathrm{cr},\mathrm y}\;=\;\frac{\mathrm\pi^2\;\cdot\;\mathrm E\;\cdot\;{\mathrm I}_{\mathrm y}}{\mathrm l^2}\;=\;\frac{\mathrm\pi^2\;\cdot\;21,000\;\mathrm{kN}/\mathrm{cm}^2\;\cdot\;43,190\;\mathrm{cm}^4}{\left(650\;\mathrm{cm}\right)^2}\;=\;21,187.3\;\mathrm{kN}\\{\overline{\mathrm\lambda}}_{\mathrm z}\;=\;\sqrt{\frac{180.6\;\mathrm{cm}^2\;\cdot23.5\;\mathrm{kN}/\mathrm{cm}^2}{21,187.3\;\mathrm{kN}}}\;=\;0.924$

Effective length according to Table 6.2:
$\frac{\mathrm h}{\mathrm b}\;=\;\frac{360\;\mathrm{mm}}{300\;\mathrm{mm}}\;=\;1.2\;\leq\;1.2\\{\mathrm t}_{\mathrm f}\;=\;22.5\;\mathrm{mm}\;\leq\;100\;\mathrm{mm}$

Instability perpendicular to the y-axis: Buckling stress curve BSCz: b
Table 6.1 shows the imperfection factor α = 0.34.
$\mathrm\phi\;=\;0.5\;\cdot\;\left[1\;+\;0.34\;\cdot\;\left(0.448\;-\;0.2\right)\;+\;0.448^2\right]\;=\;0.642\\{\mathrm\chi}_{\mathrm y}\;=\;\frac1{0.642\;+\;\sqrt{0.642^2\;-\;0.448^2}}\;=\;0.907\;\leq\;1.0$

Interaction factor according to Annex B, Table B1:
${\mathrm k}_{\mathrm{yy}}\;=\;{\mathrm C}_{\mathrm{my}}\;\cdot\;\left(1\;+\;\left({\overline{\mathrm\lambda}}_{\mathrm y}\;-\;0.2\right)\;\cdot\;\frac{{\mathrm N}_{\mathrm{Ed}}}{{\mathrm\chi}_{\mathrm y}\;\cdot\;{\displaystyle\frac{{\mathrm N}_{\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}}\right)\;\leq\;{\mathrm C}_{\mathrm{my}}\;\cdot\;\left(1\;+\;0.8\;\cdot\;\frac{{\mathrm N}_{\mathrm{Ed}}}{{\mathrm\chi}_{\mathrm y}\;\cdot\;{\displaystyle\frac{{\mathrm N}_{\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}}\right)$

Equivalent moment factor Cmy according to Table B.3:
${\mathrm\alpha}_{\mathrm h}\;=\;\frac{{\mathrm M}_{\mathrm h}}{{\mathrm M}_{\mathrm s}}\;=\;\frac{0.00\;\mathrm{kNm}}{79.22\;\mathrm{kNm}}\;=\;0\\{\mathrm C}_{\mathrm{my}}\;=\;0.95\;+\;0.05\;\cdot\;{\mathrm\alpha}_{\mathrm h}\;=\;0.95\\{\overline{\mathrm\lambda}}_{\mathrm y}\;=\;0.448\\{\mathrm N}_{\mathrm{Rk}}\;=\;\mathrm A\;\cdot\;{\mathrm f}_{\mathrm y}\;=\;180.60\;\mathrm{cm}^2\;\cdot\;23.5\;\frac{\mathrm{kN}}{\mathrm{cm}^2\;\;}\;=\;4,244.1\;\mathrm{kN}\\{\mathrm k}_{\mathrm{yy}}\;=\;0.95\;\cdot\;\left(1\;+\;\left(0.448\;-\;0.2\right)\;\cdot\;\frac{2,000\;\mathrm{kN}}{0.907\;\cdot\;{\displaystyle\frac{4,244.10\;\mathrm{kN}}{1.0}}}\right)\;=\;1.07\\{\mathrm k}_{\mathrm{yy},\max}\;=\;0.95\;\cdot\;\left(1\;+\;0.8\;\cdot\;\frac{2,000\;\mathrm{kN}}{0.907\;\cdot\;{\displaystyle\frac{4,244.10\;\mathrm{kN}}{1.0}}}\right)\;=\;1.34\\1.07\;<\;1.34$

According to EN 1993-1-1, 6.3.2.3:
${\mathrm\chi}_{\mathrm{LT}}\;=\;\frac1{{\mathrm\phi}_{\mathrm{LT}}\;+\;\sqrt{{\mathrm\phi}_{\mathrm{LT}}^2\;-\;\mathrm\beta\;\cdot\;{\overline{\mathrm\lambda}}_{\mathrm{LT}}^2}}\\{\mathrm\phi}_{\mathrm{LT}}\;=\;0.5\;\cdot\;\left[1\;+\;{\mathrm\alpha}_{\mathrm{LT}}\;\cdot\;\left({\overline{\mathrm\lambda}}_{\mathrm{LT}}\;-\;{\overline{\mathrm\lambda}}_{\mathrm{LT}0}\right)\;+\;\mathrm\beta\;\cdot\;{\overline{\mathrm\lambda}}_{\mathrm{LT}}^2\right]$

According to EN 1993-1-1, Tab. 6.5:
$\frac{\mathrm h}{\mathrm b}\;=\;\frac{360\;\mathrm{mm}}{300\;\mathrm{mm}}\;=\;1.20\;<\;2$ → Buckling stress curve BSCLT: b

According to EN 1993-1-1, Tab. 6.3:
${\mathrm\alpha}_{\mathrm{LT}}\;=\;0.34\\\mathrm\beta\;=\;0.75\\{\mathrm\lambda}_{\mathrm{LT}0}\;=\;0.40\\{\mathrm M}_{\mathrm{cr}}\;=\;{\mathrm C}_1\;\cdot\;\frac{\mathrm\pi^2\;\cdot\;\mathrm E\;\cdot\;{\mathrm I}_{\mathrm z}}{\left(\mathrm k\;\cdot\;\mathrm L\right)^2}\;\cdot\;\left(\sqrt{\left(\frac{\mathrm k}{{\mathrm k}_{\mathrm W}}\right)\;\cdot\;\frac{{\mathrm I}_{\mathrm W}}{{\mathrm I}_{\mathrm z}}\;+\;\frac{\left(\mathrm k\;\cdot\;\mathrm L\right)^2\;\cdot\;\mathrm G\;\cdot\;{\mathrm I}_{\mathrm t}}{\mathrm\pi^2\;\cdot\;\mathrm E\;\cdot\;{\mathrm I}_{\mathrm z}}\;+\left({\mathrm C}_2\;\cdot\;{\mathrm z}_{\mathrm g}\right)^2\;}\;-\;{\mathrm C}_2\;\cdot\;{\mathrm z}_{\mathrm g}\;\right)\\\mathrm k\;=\;1.0\\{\mathrm k}_{\mathrm w}\;=\;1.0$

C1 and C2 from Table 3.2 NCCI: Elastic critical torsional buckling moment [5] (compatible additional documents to Eurocode 3):
C1 = 1.127
C2 = 0.454

Distance from load application point to shear center zg = 18 cm.

${\mathrm M}_{\mathrm{cr}}\;=\;1.127\;\cdot\;\frac{\mathrm\pi^2\;\cdot\;21,000\;{\displaystyle\frac{\mathrm{kN}}{\mathrm{cm}^2}}\;\cdot\;10,140\;\mathrm{cm}^4}{\left(1\;\cdot\;650\;\mathrm{cm}\right)^2}\;\cdot\;\left(\sqrt{\left(\frac11\right)\;\cdot\;\frac{2,883,000\;\mathrm{cm}^6}{10,140\;\mathrm{cm}^4}\;+\;\frac{\left(1.0\;\cdot\;650\;\mathrm{cm}\right)^2\;\cdot\;8,076.92\;{\displaystyle\frac{\mathrm{kN}}{\mathrm{cm}^2}}\;\cdot\;292.5\;\mathrm{cm}^4}{\mathrm\pi^2\;\cdot\;21,000\;{\displaystyle\frac{\mathrm{kN}}{\mathrm{cm}^2}}\;\cdot\;10,140\;\mathrm{cm}^4}\;+\;\left(0.454\;\cdot\;18\;\mathrm{cm}\right)^2\;}\;-\;0.454\;\cdot\;18\;\mathrm{cm}\;\right)\\{\mathrm M}_{\mathrm{cr}}\;=\;115,310\;\mathrm{kNcm}\;=\;1,153.10\;\mathrm{kNm}\\{\overline{\mathrm\lambda}}_{\mathrm{LT}}\;=\;\sqrt{\frac{{\mathrm W}_{\mathrm{pl},\mathrm y}\;\cdot\;{\mathrm f}_{\mathrm y}}{{\mathrm M}_{\mathrm{cr}}}}\;=\;\sqrt{\frac{2,683\;\mathrm{cm}^3\;\cdot\;23.5\;{\displaystyle\frac{\mathrm{kN}}{\mathrm{cm}^2}}}{115,310\;\mathrm{kNcm}}}\;=\;0.739\\{\mathrm\phi}_{\mathrm{LT}}\;=\;0.5\;\cdot\;\left[1\;+\;0.34\;\cdot\;\left(0.739\;-\;0.4\right)\;+\;0.75\;\cdot\;0.739^2\right]\;=\;0.762\\{\mathrm\chi}_{\mathrm{LT}}\;=\;\frac1{0.762\;+\;\sqrt{0.762^2\;-\;0.75\;\cdot\;0.739^2}}\;=\;0.85\;<\;1$

According to EN 1993-1-1, Tab. 6.7:
${\mathrm M}_{\mathrm y,\mathrm{Rk}}\;=\;{\mathrm f}_{\mathrm y}\;\cdot\;{\mathrm W}_{\mathrm{pl},\mathrm y}\;=\;23.5\;\frac{\mathrm{kN}}{\mathrm{cm}^{2\;}}\;\cdot\;2,683\;\mathrm{cm}^3\;=\;63,050.5\;\mathrm{kNcm}\;=\;630.51\;\mathrm{kNm}$

Buckling design about the major axis:
$\frac{{\mathrm N}_{\mathrm{Ed}}}{\displaystyle\frac{{\mathrm\chi}_{\mathrm y}\;\cdot\;{\mathrm N}_{\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}\;+\;{\mathrm k}_{\mathrm{yy}\;}\cdot\;\frac{{\mathrm M}_{\mathrm y,\mathrm{Ed}}}{{\mathrm\chi}_{\mathrm{LT}}\;\cdot\;{\displaystyle\frac{{\mathrm M}_{\mathrm y,\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}}\;\leq\;1\\\frac{2,000\;\mathrm{kN}}{\displaystyle\frac{0.907\;\cdot\;4,244,10\;\mathrm{kN}}{1.0}}\;+\;1.072\;\cdot\;\frac{79.22\;\mathrm{kNm}}{0.85\;\cdot\;{\displaystyle\frac{630.51\;\mathrm{kNm}}{1.0}}}\;=\;0.67\;\leq\;1$

Buckling design about the minor axis:
$\frac{{\mathrm N}_{\mathrm{Ed}}}{\displaystyle\frac{{\mathrm\chi}_{\mathrm z}\;\cdot\;{\mathrm N}_{\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}\;+\;{\mathrm k}_{\mathrm{zy}\;}\cdot\;\frac{{\mathrm M}_{\mathrm y,\mathrm{Ed}}}{{\mathrm\chi}_{\mathrm{LT}}\;\cdot\;{\displaystyle\frac{{\mathrm M}_{\mathrm y,\mathrm{Rk}}}{{\mathrm\gamma}_{\mathrm M1}}}}\;\leq\;1\\\frac{2,000\;\mathrm{kN}}{\displaystyle\frac{0.585\;\cdot\;4,244,10\;\mathrm{kN}}{1.0}}\;+\;0.894\;\cdot\;\frac{79.22\;\mathrm{kNm}}{0.85\;\cdot\;{\displaystyle\frac{630.51\;\mathrm{kNm}}{1.0}}}\;=\;0.93\;\leq\;1$

→ Checks fulfilled.

Author

Dipl.-Ing. (BA) Sandy Matula

Dipl.-Ing. (BA) Sandy Matula

Customer Support

Ms. Matula provides technical support for our customers.

Keywords

Design Stability Stability analysis of a column Hinged column Axial force Bending Flexural buckling

Reference

[1]   Eurocode 3: Design of steel structures - Part 1‑1: General rules and rules for buildings; EN 1993‑1‑1:2010‑12
[2]   Manual RF-/STEEL EC3. (2020). Tiefenbach: Dlubal Software.
[3]   Albert, A. (2018). Schneider - Bautabellen für Ingenieure mit Berechnungshinweisen und Beispielen (23rd ed.). Cologne: Bundesanzeiger.
[4]   Kuhlmann, U.; Feldmann, M.; Lindner, J.; Müller, C.; Stroetmann, R.: Eurocode 3 Bemessung und Konstruktion von Stahlbauten - Band 1: Allgemeine Regeln und Hochbau - DIN EN 1993-1-1 mit Nationalem Anhang, Kommentar und Beispiele. Berlin: Beuth, 2014
[5]   Bureau, A.: NCCI: Elastisches kritisches Biegedrillknickmoment. Aachen: RWTH, 2010

Downloads

Links

Write Comment...

Write Comment...

  • Views 1576x
  • Updated 19 April 2021

Contact us

Contact Dlubal

Do you have questions or need advice?
Contact our free e-mail, chat, or forum support or find various suggested solutions and useful tips on our FAQ page.

+49 9673 9203 0

info@dlubal.com

RFEM Main Program
RFEM 5.xx

Main Program

Structural engineering software for finite element analysis (FEA) of planar and spatial structural systems consisting of plates, walls, shells, members (beams), solids and contact elements

Price of First License
3,540.00 USD
RFEM Steel and Aluminium Structures
RF-STEEL EC3 5.xx

Add-on Module

Design of steel members according to Eurocode 3

Price of First License
1,480.00 USD
RSTAB Main Program
RSTAB 8.xx

Main Program

The structural engineering software for design of frame, beam and truss structures, performing linear and nonlinear calculations of internal forces, deformations, and support reactions

Price of First License
2,550.00 USD
RSTAB Steel and Aluminium Structures
STEEL EC3 8.xx

Add-on Module

Design of steel members according to Eurocode 3

Price of First License
1,480.00 USD